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A SIMPLE MODEL OF A SYNCHRONOUS MACHINE WITH DIODE RECTIFIER

USING STATE VARIABLES

M.J. Hoeijmakers

Eindhoven University of Technology,
P.O. Box 513> 5600 MB Eindhoven, The Netherlands

Most simulation methods for a synchronous machine with rectifier

require a lot of computation time. Neglecting the harmonics on

the phase currents and the ripple on the direct current, a less

detailed method based on state description is derived. The

commutation phenomena in the rectifier are taken into account.

1. INTRODUCTION

The interest in renewable energy has resulted in much research in wind

energy conversion systems. One of the favourite conversion systems is the
series system synchronous machine - diode rectifier - smoothing coil -

inverter as depicted in figure 1, by means of which variable-speed

operation of the wind turbine is possible, so that wind energy as well

as system components may be utilized in an optimal way [1].

i:n

'V

Figure 1 A wind-energy conversion-system with synchronous machine and
dc-link

Although the steady-state behaviour of this system is good, its transient

behaviour may be problematic, especially with a large system. In order

to investigate the dynamic behaviour of this sytem, a detailed simulation

of the system is often used. Such a simulation, in which for example the
commutation in the rectifier can be recognized, requires a lot of compu
tation time [2]. However, in order to investigate the stability, not only
the electrical part, but the whole wind energy conversion system, so

including the mechanical part, has to be considered. Using a detailed

simulation of the synchronous machine with rectifier, the computation
time would be too large for normal use.

Within the framework of the Netherlands Wind Energy Research Program, the
group Electromechanics and Power Electronics of the Eindhoven University
of Technology received the research request to find a less detailed

simulation method. In this paper, the principles of the method found are
presented.

The system considered here is given in figure 2. First, the two important
parts of this system, the synchronous machine and the rectifier, will be

described separately. Next, the steady-state model of the system is given.
Using the suppositions from this model, the dynamic model is derived.
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Figure 2 The system considered here

2. THE THREE-PHASE DIODE-BRIDGE RECTIFIER

In the description of the rectifier, the circuit shown in figure 3 will be

used. The rectifier is fed by a three-phase voltage source with internal

self-inductance and internal voltages e^, e^ and e^ according to
^ 2 '' H

ea = ecos(tot) ; e^, = e cos (ut -tt) ; Cq = e cos (tot -tt)

where to is a constant angular frequency and e is a constant amplitude. The

rectifier is loaded by a constant current source Ig. The diodes will be
considered as ideal switches; resistances in the circuit are neglected.

Thanks to the symmetry of the circuit and of the currents and voltages in

this circuit, the description of the rectifier can be restricted to an

interval of ir/3 rad of length. Here the interval between the angle corre

sponding to the starting instant of diode D-j and the angle corresponding
to the starting instant of diode D5 will be used. Diode D-^ will turn on
at the instant at which the voltage e^ reaches the same (positive) value
as the voltage e^: a)t = ~iT/3. Hence, the considered interval, which is
indicated by means of a thick line piece in figure 4, is given by
- tt/S < o)t < 0. The angle of overlap p, which will be defined later on, is

supposed to be smaller than it/3 rad.

(2.1 )
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Figure 4 Some quantities as
functions of wt

(p = 0.4)

Figure 3 Base circuit for the

rectifier description
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considered interval, the diodes Dij and D5 are conducting-
beginning of this interval diode Dt will turn on Ld the currLt I

starts to transfer from diode D5 to diode Di (the starting instant of the

commutation) During this commutation only the diodes , Dij and D. are
conducting. Hence, using (2.1) and the initial conditioi i^V ./3) = 0 the

Howling relations can be given for the commutation interval considered:
~ n - cos (o)t + |)}.

c ^ ^
_ /3e

g 2u3L

g

1
- Ia

g

(2.2)

i - J-ecos (u)t "j)
The commutation is finished when the current through diode (i )

beg?nnLro?’t^c® time expressed in angular measure, elapsed^rom the
thfana^P nr commutation until the end of the commutation is called

finl^fd afth:"nstan“; l«er,al the co^utatlon
ic (~ fr/3 + p) = 0 and (2.2),

i = I { 1 - cos (o)t +0

c

IS

corresponding to wt = - 7t/3 + p. From the condition
it follows:

2o)L I
c g1 - cos p =

/3e

After the commutation being finished, only the diodes Di and Di, are con-
ucting Using figure 3 and the voltage expressions (2.1), theVollowing
Lnslde'e^dr^"

= ®a ~ ®b = '^3e cos (tot + -|)
' Ug can be found by means of the

(2.3)

ic “ 0 ! u
(2.t)g

The average value of the voltage
sions (2.2), expres-

(2.^4) and (2.3):
0

3
3v^3e -^toL IU u dtot =

gO IT (2.5)g ir IT

IT

3

By means of Fourier analysis and the ,
the fundamental component of the phase
iai (u)t) = igctcos (tot) -t- i

where the active and the

I (1 cos p) ;

equations (2.2), (2.3) and (2.4),
current may be expressed as

sin (tot) (2.6a)rea

reactive component coefficients are given by

{2p - sin (2p)}
/3 3e

^act 1
(2.6b)TT g 4toL IT

c

the ripple on the direct current may be ne-
description in the previous part may be used for

the steady state. The description may also be used for

the amplitude or frequency of the phase voltages
of the direct current.

The dynamic model introduced in this way may be improved by enlarging the

“‘tt' 21-0 [3:. This ehlasgemJ correspondr
With the inductance seen from the dc-side of the rectifier
diodes are conducting. Using (2.5),
figure 5 may be composed.

rea

In many practical situations,
glected,

slow changes in
and the average value

when two

the equivalent circuit given in

/●w-\

2Lc I g +^ U7T 9

Figure 5 An equivalent circuit for the rectifier
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3. THE SYNCHRONOUS MACHINE

As in many cases, in this paper the (salient pole) synchronous machine
IS represented with one damper winding on the direct axis and one damper
winding on the quadrature axis. In order to describe this machine, the
Park transformation for the phase current according to

^d ^ ij^GOs(Y -|tt) + i^ cos ( Y - |tt) }
sinY + ij^ sin(Y -I-it) + i^ sin(Y - jtt) }

j

t!

f

(3.1a)■t

4

(3.1b)

^0 = b ^c^ (3.1c)

will be used. The angle Y is defined in figure 2. For the phase voltages
and flux linkages simular formulas will be used. As may be seen in figure
2, the homopolar current is zero. For that reason no attention is paid
to this component. With the usual suppositions for synchronous machines

(see for example [4]), the stator voltage equations may be given by

1*^
irr‘“»q

where m is the angular speed of the rotor (cj =

u = - R i
o^^d ; d ad (3.2)a q dtq

dy
). The rotor voltages aredt

d^i di{)Id 1 q
"f ^''f'f " dt 0 = R

° ^llq^lq dt1Id^ld
+

(3.3)+I

dt

In these expressions the subscripts Id, f en 1 q refer to. respectively,
the damper winding on the direct axis, the excitation (field) winding and
the damper winding on the quadrature axis.
The flux linkages in the voltage equations are given by

'^d ^d L afd *^a1d

^afd '"ffd LfTd
^ald ^fld L

'd
L

''q L ,
q alq

'^al q '^l 1 q

i
q

’^f ^f (3.4)
^iq1 q

1 d ^1dlid

Substituting the expressions (3.4) into the voltage equations (3.2) and

(3-3) results in a set of two equations for the quadrature axis

di di

Iq+ R i .+ L ^ + L
a q q dt

+ L
afd^f '' ^ald^ld)

- u

(3.5a)a1 q dt

di di
1 q0 + R + L (3.5b)11q"lq a1 q dt

and a set of three equations for the direct axis

1 1 q dt

di di

-■+ L
Id- u = o)(L i + L

d q n , i, ) + R i,
a1q 1q ad

L + L (3.6a)aidd dt afd dt dt

di di
f , Id

R„i + Lu + L (3.6b)f f f afd dt ffd dt dt

di
Id

(3.6c)0 R + L + L1Id^ld

The per-unit system will not be used in this

values for voltage, current and time for the stationary circuit are,

+ L
aid dt fid dt lid dt

paper, so that the base

19A



respectively, IV, 1A, and Is. However, in order to get equivalent circuits
suitable for simulation, the rotor base values for voltage and for current

are chosen different. This is realized by introducing three new currents:

one for the quadrature-axis damper winding, one for the direct-axis damper
winding, and one for the excitation winding

1 .

Cp ^f

^afd^l Id “ ^ald^fld

1 1

^ 1 q > C.. ^1d ’ (3.7a)
D

L

^ald^ffd “ ^afd^fld= a1 q
Q L

where C ; C (3.7b)
-L? D

-l!11q ^ffd^lId ^ffd^lId
The motivation of this choice may be found in [2]. In order to get simple
equations, the following parameters are introduced:

fid fid

It

= c2r^qQ = C„L
^ = ^q *■ ^qQ = Q‘‘11q ’ ^dF

Using (3.7) and (3.8) and multiplying (3.5b) with Cq, the set of equations
(3.5) becomes

= C„LF^afd ’ ^dD *^D^a1d 'Q alq ’ q

IT

^d ^d “ ^dF “ ^dD ’ ^FD “ “ ^F^^fld’ F '^F^f (3.8)u

di di di^
(—^ + —^)

qQ dt dt ^

II

■^ + L- u = - o)(L i
d d ^dF^F ^dD^D^ ^a\ + L (3.9a)

q q dt

di di
Q+ L (—2. +

qQ ^ dt dt
The equivalent circuit shown in figure 6a is given by these voltage
equations.

Using (3.7) and (3.8), multiplying (3.6b) with Cp, and multiplying (3.6c)
with Cp, the set of equations (3.6) becomes

= w(L i + L i ) + R i + L
d q q qQ Q ad

(3.9b)0 = R„i
Q Q

di
D

- u + L —-
dF dt ^dD dtd dt

"'d di
D

= Rf'f + (L,„ + h ^)dF FD dt
+ Lu (3.10)'"FD dtF dF dt

di di

^FD dt
D

0 = R„i + L )
dD FD^ dt

The equivalent circuit shown in figure 6b is given by these voltage
equations.

+ L
D D dD dt

●-q Ld-Id ●f +Ra Rf

C)
o-[

Ljf
T

'q ufRa

>-q0 Rq Ud L
tj^d FD

+
l-dD Rdtoy,

●d+

ba

Figure 6 The quadrature-axis (a) and direct-axis (b) equivalent circuits.

II II

As may be seen in figure 6, Lq and are, respectively, the normal quad
rature-axis and the normal direct-axis sub-transient inductances.

■?>
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4. THE STEADY-STATE MODEL OF THE SYNCHRONOUS MACHINE

When a diode bridge is connected to a synchronous machine, it can be

proven that the direct-axis and the quadrature-axis components of the

armature currents consist of a constant part (1^, and and a fast
changing part which may be represented by a Fourier series with terms

with an angular frequency which is a multiple of 6co [5]. For these fast
changing current components the network parts to the right of the dashed
lines in figure 6 resemble short circuits. This resemblance is supposed
to be exact, so that the dashed lines can be interpreted as short
for these components.

WITH DIODE BRIDGE

lA

#

circuits

In order to combine the models described in the chapters 2 and 3, the
equivalent circuit of the synchronous machine should correspond with

figure 3. When = Lq = L this is easily achieved by rearranging the
equivalent circuit of the synchronous machine. In most other cases

(Lq^Lq) an approximation can be used [5].
Using the Park transformation according to (3.1) for the

uo = 0, the stator voltages may be given by
voltages with

^=^{Ud COSY + u sin y}
q ^

|-it) + u^ sin(Y - j-n)
4

jtt) + u^ sin(Y -

the internal voltages e^

u

(4.1a)

b=^lUdCos(Y-u

(4.1b)

= ’VI-d TTt)u^ cos(Y -u

(4.1c)3
di

d It.
— + o)L 1Next,

d ad
+ L= u (4.2a)dt q

di

®q ^q ^a^q dt ^d (4.2b)
Introduced. Using (3.1), (4.2), 1q = 0, and Y=tot + Tr/2, and neglecting

the armature resistance, the stator voltages according to '(4.1) become

II di
'' cL

"L = ecos(u)t - e)

din
b '' . ^

= e cos (cut - e

are

di
au +e sinY ■

(4.3a)-L
q dt

"'bb=^ +e^sin(Y-|^) -L -|^) -L

tt) +e^sln(Y-|^) ^cos (o)t - e -|u) -L
e

e = - arctan (— )
e

f?
u

(4.3b)dt dt

e-)/|-[e^ood(Y-|
di

u c (4.3c)
dt

Where S - \/|v'e^ * , (4.4)
q

After all these manipulations. the circuit given in figure 7 arises.

10;
* *

Rf

LdF O
id Id L*' q laIq Sa»

UpI ©b

10;[LqQYRo
e /-y-VY®dQ » .

^ ij) I

—0- '
l-FO L'

<b
i-do Rd Sc L*Id

=0^
Ic

ik

Figure 7 Equivalent circuit of the synchronous machine with L
It ft

= Lq = Lq
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Since the dashed lines in this figure are supposed to be short circuits

for the fast changing parts in i
the voltages in the right part o

g and ijj, eg and e,j are constant. Hence,
f figure 7 are sinusoidal, so that this

part corresponds with figure 3; there is only a phase shift c.

The quadrature-axis and the direct-axis circuits in figure 7 may represent

a normal synchronous machine with Rg = 0 and = Lg = 0. This is called
the "internal" machine. When this machine is extended by means of three
self-inductances L

The phase angle e represents the load angle of the
the original model machine arises (see figure 8).

internal" machine.

Figure 8 The "internal" machine

In order to compute the steady-state of the synchronous machine with

rectifier, the constant parts of ig and i^, Ig and I(j, have to be known.
These constant parts correspond with the basic harmonics of the armature

phase currents ((2.6)), so that according to (3.1) (Y = o)t+TT/2):

v\Tl (i sin e) ;cos e - i cos e) (4.5)sin e + i
act actrea rea

The set of equations (2.3), (2.5), (2.6), (3.9), (3.10), (4.2), (4.3),

(4.4)^and (4.5) with di^/dt = dip/dt = dip/dt = dig/dt = dig/dt = 0,
Ld = Lq = Lc> f^a gives a complete descripti
model of the synchronous machine. This set may be solved numerically.

on of the steady-state

5. THE DYNAMIC MODEL OF THE SYNCHRONOUS MACHINE WITH DIODE BRIDGE

In the dynamic model of the system, the description of the rectifier in

chapter 2 will be used (the ripple on the direct current is neglected).

Combining the model from this chapter (figure 5) and figure 2 results in
an equation for the dc-circuit (for lr,>0)

g

dl

= ^/3S - (-toLg
+ R )I

c g
- /(L + 2L )

b g c
(5.1 )dt ir IT

As in chapter 4, in the phase currents of the synchronous machine only
the basic harmonics are taken into account. However, the amplitude, phase,
and angular frequency of these basic harmonics may vary now. So using

(2.6) and (4.5), it may be seen that Ig and I(j may vary. Hence, these
quantities are no longer the constant parts of ig and i^j. Now, they may
be seen as short-term averaged parts of ig and i^. These short-term
averaged currents are used in the synchronous machine equations.

197



i

As may be seen in figure 7, the (averaged) currents through L^jp,
and LqQ might well be chosen as state variables:

^dF ^ ^d ^ ' ^dD " ^d ^ ’ ^qQ

Using these expressions and (4.2) with Rg = 0 (L5 = Ld), after some
manipulations the sets of equations (3.9) and (3.10) become

^ = " VdF^ WdD^^^Q^IqQ-Iq)

^ “^qQ^qQ

(5.2)

(5.3a)

F ^F^^dF ^d^- u (5.3b)dD

dl
qQ

(5.3c)dt

dl
I dF

= [(L dF ^d^ ^FD^D^ ^dD ^d ^ ^^dD^dF^^dD^FD '■^FD^dF ^ ^^ . 3d)dt dD

dl
dD

= [L F-«F^'dF-'d)J-^W" ^^D^^dD ^d^^'^^^dD^dF'"'"dD^FD''^FD^dF) (5.3e)
The set of equations (2.3), (2.6), (4.4), (4.5), (5.1), and (5.3) gives
a description of the dynamic model of the synchronous machine with de

link. This is a fourth order model with Ig, IqQ, Iqp, and as state
variables. Unfortunately on the moment of writing this paper, the author

had not found a method to give the differential equations in an explicit'
form, so that the set of equations (2.3), (2.6), (4.4), (4.5), (5.3a),
and (5.3b) had to be solved numerically in each integration step. However,

when the Newton Raphson iteration method is used, this is not a real

problem, because the solution is found in only a few steps.

u
dt FD FD

?

6. EXAMPLES

In order to give an impression of the value of this model, the transients

after a normal switch-on of a 20 kW system have been computed in two

different ways. In figure 9 some results of the computation using the
model presented here are given. These transients have been computed by
means of the simulation package ACSL on a personal computer. The compu
tation time is about 80 s. In figure 10 the results of a detailed

simulation on a main-frame computer are presented [2]. In this case the

computation time was about 1000 s. Comparing these two figures, it may

be seen that the differences, except for the ripple in figure 10,

very small. In order to spare computation time for the detailed

simulation, the rotor of the synchronous machine has been assumed to

rotate with a constant angular velocity.

are

7. CONCLUSION

In this paper a rather simple fourth-order dynamic model of a synchronous

machine with dc-link is presented. Using this model instead of a more

complex model for a detailed simulation results in an enormous reduction

of computation time at the expense of information about details, such as

harmonics on the phase currents and the ripple on the direct current.

However, short-term averaged values of the system variables are simulated

correctly.
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Figure 9 A normal switch-on, computed with the model presented here

(Computation time: 80 s on a personal computer)

O'
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Figure 10 A normal swltch-on, detailed simulation

(Computation time: 1000 s on a main-frame computer)
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