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Most simulation methods for a synchronous machine with rectifier
require a lot of computation time. Neglecting the harmonics on
the phase currents and the ripple on the direct current, a less
detailed method based on state description is derived. The
commutation phenomena in the rectifier are taken into account.

1. INTRODUCTION

The interest in renewable energy has resulted in much research in wind
energy conversion systems. One of the favourite conversion systems is the
series system synchronous machine - diode rectifier - smoothing coil -
inverter as depicted in figure 1, by means of which variable—-speed
operation of the wind turbine is possible, so that wind energy as well

as system components may be utilized in an optimal way [1].
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Figure 1 A wind-energy conversion-system with synchronous machine and
de—link

Although the steady-state behaviour of this system is good, its transient
behaviour may be problematic, especially with a large system. In order

to investigate the dynamic behaviour of this sytem, a detailed simulation
of the system is often used. Such a simulation, in which for example the
commutation in the rectifier can be recognized, requires a lot of compu-—
tation time [2]. However, in order to investigate the stability, not only
the electrical part, but the whole wind energy conversion system, so
including the mechanical part, has to be considered. Using a detailed
simulation of the synchronous machine with rectifier, the computation
time would be too large for normal use.

Within the framework of the Netherlands Wind Energy Research Program, the
group Electromechanics and Power Electronics of the Eindhoven University
of Technology received the research request to find a less detailed
simulation method. In this paper, the principles of the method found are
presented.

The system considered here is given in figure 2. First, the two important
parts of this system, the synchronous machine and the rectifier, will be
described separately. Next, the steady-state model of the system is given.
Using the suppositions from this model, the dynamic model is derived.
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Figure 2 The system considered here

2. THE THREE-PHASE DIODE-BRIDGE RECTIFIER

In the description of the rectifier, the circuit shown in figure 3 will be
used. The rectifier is fed by a three-phase voltage source with internal
self-inductance Ly and internal voltages ey, ep and ep according to

eg = ecos (wt) ; eb=écos(wt—§n) : ec=écos(mt——g—n) (2+1)
where w is a constant angular frequency and é is a constant amplitude. The
rectifier is loaded by a constant current source Ig. The diodes will be
considered as ideal switches; resistances in the circuit are neglected.
Thanks to the symmetry of the circuit and of the currents and voltages in
this circuit, the description of the rectifier can be restricted to an
interval of w/3 rad of length. Here the interval between the angle corre-
sponding to the starting instant of diode Dy and the angle corresponding
to the starting instant of diode Dg will be used. Diode Dy will turn on

at the instant at which the voltage ez reaches the same (positive) value
as the voltage eg: wt =-w/3. Hence, the considered interval, which is
indicated by means of a thick line piece in figure 4, is given by
-m/3<wt<0. The angle of overlap u, which will be defined later on, is
supposed to be smaller than w/3 rad.
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Figure 3 Base circuit for the Figure 4 Some quantities as
rectifier description functions of wt
(u=0.4)
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Just before the considered interval, the diodes Dy and D5 are conducting;
at the beginning of this interval diode D1 will turn on and the current I
starts to transfer from diode Dg to diode Dq (the starting instant of the
commutation). During this commutation only the diodes Dq, Dy and Dg are
conducting. Hence, using (2.1) and the initial condition iy (- w/3) =0, the
following relations can be given for the commutation interval considered:

_ /3é _ T . N
S {1 - cos Out+-§)} : i, = Ig
C/BA : (2.2)
< VD€ vy + + . = e a
e 1o ZwLC{1 cos (wt +3)} ; ug 2ecos(wt+3)

The commutation is finished when the current through diode D5 (io)
becomes zero. The time expressed in angular measure, elapsed from the
beginning of the commutation until the end of the commutation is called
the angle of overlap u. In the considered interval the commutation is

finished at the instant corresponding to wt == 7/3+ y. From the condition
le(=m/3+ 1) =0 and (2.2), it follows:
2wLCI
1 =cos = Ag (2.3)
V3e

After the commutation being finished, only the diodes Dy and Dy are con-
ducting. Using figure 3 and the voltage expressions (2.1), the following
eéxpressions can be given (only valid in the second part of the interval
considered): -
ia=-ib=Ig; ic=0 ; ug=ea-eb=/3écos(wt+g) (2.4)
The average value of the voltage Ug can be found by means of the expres-
sions (2.2), (2.4) and (2.3):

(0]
Uik e Ju dut =338 -3, 1 (2.5)
g0 g m moeg

=
3 :
By means of Fourier analysis and the equations (2.2), (2.3) and (2.4),
the fundamental component of the phase current may be expressed as

i1 (wt) = iz0¢cos (wt) + ipeasin (wt) (2.6a)
where the active and the reactive component coefficients are given by

V3 3e .
. WA s ; = - 2.6b
I Ig(1 +cos ) ; 1ea quc“ 2w="sin(2n)} ( )

In many practical situations, the ripple on the direct current may be ne-
glected, so that the description in the previous part may be used for

the steady state. The description may also be used for slow changes in
the amplitude or frequency of the phase voltages and the average value

of the direct current.

The dynamic model introduced in this way may be improved by enlarging the
inductance in the de-circuit with 2Le [3]. This enlargement corresponds
with the inductance seen from the dc-side of the rectifier when two
diodes are conducting. Using (2.5), the equivalent circuit given in
figure 5 may be composed.
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Figure 5 An equivalent circuit for the rectifier
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3. THE SYNCHRONOUS MACHINE

As in many cases, in this paper the (salient pole) synchronous machine
is represented with one damper winding on the direct axis and one damper
winding on the quadrature axis. In order to describe this machine, the
Park transformation for the phase current according to

. 2 : 2 - 4
- =V%{la cos Y + i cos (Y ‘§1T) *.1, cos(Y -gn)} (3.14)

iq=V§{iasinY+ibsin(Y-gn)w‘icsin(Y-%—w)} (3.1b)
io=v1—;{ia+ib+ic} (3le)

will be used. The angle Y is defined in figure 2. For the phase voltages
and flux linkages simular formulas will be used. As may be seen in figure
2, the homopolar current is zero. For that reason no attention is paid

to this component. With the usual suppositions for synchronous machines
(see for example [4]), the stator voltage equations may be given by

dy dy
ug =-Raiq-7ﬂ?-+mwd P oug = TRyl g - el (3.2)
where w is the angular speed of the rotor (w-=g%0. The rotor voltages are
R o Yy W
Bpolaletoge 3 O Rygilig Yo & 0= Brvgtg T ae (3.3)

In these expressions the subscripts 1d, f en 1q refer to, respectively,
the damper winding on the direct axis, the excitation (field) winding and
the damper winding on the quadrature axis.

The flux linkages in the voltage equations are given by
Yq by Laed “ara| |
Y L L 1

" =1 T L . q q alq q

¥ i F) 5 =

iy afd ffd f1d lf ’ v TR, I i (3.4)
L L . 1q alg 11gq 1q

“1d ald fid L11d_J l1d

Substituting the expressions (3.4) into the voltage equations (3.2) and
(3.3) results in a set of two equations for the quadrature axis

ai ai
Sl T el Lpa®e " Banaliay R batq aE (3.5a)
i o
¢ = Rriatte T Mg Ee ¢ iq Gk (3.50)
and a set of three equations for the direct axis
di di di
. . . d £ 1d
- g SRty Bl Rabe. P e el o (3-62)
di di di,
b = Rele  *Lliraar *lepa e © LE1d—qc (3.60)
di di di
- . d f 1d (3.6¢)
& .= Boiatte t hardae - Ceiaat " “11dTde

The per-unit system will not be used in this paper, so that the base

values for voltage, current and time for the stationary circuit are,
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respectively, 1V, 1A, and 1s. However, in order to get equivalent circuits
suitable for simulation, the rotor base values for voltage and for current
are chosen different. This is realized by introducing three new currents:
one for the quadrature-axis damper winding, one for the direct-axis damper
winding, and one for the excitation winding

. P . : I
Lo=mdqgrs =l o L dl ey (3. 7a)
Q¢ D= Ty a BE e
L P T (R T o ey it S ol
e ™ La1q ;g afd"11d a1g r1d c, - ald ffd afg Gl et
e Lreal11a ~ Era Lreal11a 7 Lerg

The motivation of this choice may be found in [2]. In order to get simple
equations, the following parameters are introduced:

= . LA - ‘ =02 : o . - :
LQQ CQL31Q ’ Lq Lq LqQ ’ RQ CQR11q ’ L'dF CFLafd ’ L'dD CDLa1d ’

= < - . s = ad
Ld Ld L L SRl CoC L R CsR

dF ~ “dD Uit

FD F'D fia’ "F - “F'f ! F - rYr (3.8)

Using (3.7) and (3.8) and multiplying (3.5b) with Cq, the set of equations
(3.5) becomes

a i di dig
S, = SO A S Lapip) * Ralq t Lq?+ LqQ =t ¢ at ) (3.9a)
diq diQ (3.9b)
O=RQ1Q +LqQ ?"W) s

The equivalent circuit shown in figure 6a is given by these voltage
equations.
Using (3.7) and (3.8), multiplying (3.6b) with Crp, and multiplying (3.6c)
with Cp, the set of equations (3.6) becomes

di di - di

. . ] d F D
e el g L™ B * Lerat S
di di di

d F D

= R i e - ) e
Up d=Rols *Larae * (Bar * Lep) ot Lepgt (3-10)

ai di di

: d F D

O o=ty * Lapat Lepat * Lap * Lrp) ot

The equivalent circuit shown in figure 6b is given by these voltage
equations.

a b
Figure 6 The quadrature-axis (a) and direct-axis (b) equivalent circuits.

As may be seen in figure 6, Lg and Lg are, respectively, the normal quad-
rature-axis and the normal direct-axis sub-transient inductances.
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4. THE STEADY-STATE MODEL OF THE SYNCHRONOUS MACHINE WITH DIODE BRIDGE

When a diode bridge is connected to a synchronous machine, it can be
proven that the direct—-axis and the quadrature—-axis components of the
armature currents consist of a constant part (I and I and a fast
changing part which may be represented by a Fourier series with terms
Wwith an angular frequency which is a multiple of 6w [5]. For these fast
changing current components the network parts to the right of the dashed
lines in figure 6 resemble short circuits. This resemblance is supposed
to be exact, so that the dashed lines can be interpreted as short circuits
for these components.

In order to combine the models described in the chapters 2 and 3, the
equivalent circuit of the synchronous machine should correspond with
figure 3. When Lg =IQ£= L" this is easily achieved by rearranging the
equivalent circuit of the synchronous machine. In most other cases
(LS:La) an approximation can be used [5].

Using the Park transformation according to (3.1) for the voltages with
ug =0, the stator voltages may be given by

ua=vg{udcos\’ +uqsinY} (4.1a)
ub=vg{udcos(Y—§n)+uqsin(Y—%1r)} (4.1b)
uq=vg{udcos(Y—%w)+u sin(Y—%ﬂ)} (4.1e)
g ; ndid "
Next, the internal voltages ed==ud-+Ra1d~+L It + wlL lq (4.2a)
di, y
. " s
eq=uq+Ra1q+L d—t"UJL ld ('4.2b)

are introduced. Using (3.1), (4.2), ip=0, and Y =wt + 1/2, and neglecting
the armature resistance, the stator voltages according to "(4.1) become

\2 | il o

= 3 edcosY +eqslnY : =T d—t=ecos(wt—s) L e 4.3a)
di di

2 2 TR GG D Epa B on e e

ubzv;[edcos(Y 3Tr)+eq31n(Y 31r)]- Ik T ecos (wt - ¢ 377) [5 Tt (4.3Db)

2 4 4 ndl, . 4 Wiy 4.3c)
Uc=v;{edoos(Y—§1r) +eqsin(‘{—§v) “L —g =ecos (wt - e*§1r)—L T (4.3c

e
where e =V‘§Ve2 +e2 : € =- arctan (—d) (4.4)
3 q d eq

After all these manipulations, the circuit given in figure 7 arises.

Figure 7 Equivalent circuit of the synchronous machine with L" = L‘c'l = Lq

196



Since the dashed lines in this figure are supposed to be short circuits
for the fast changing parts in i, and igs €q and eq are constant. Hence,
the voltages in the right part o? figure 7 are sinusoidal, so that this
part corresponds with figure 3; there is only a phase shift e.

The quadrature-axis and the direct-axis circuits in figure 7 may represent
a normal synchronous machine with Ry = 0 and LS =Ly =0. This is called

the "internal"™ machine. When this machine is extenged by means of three
self-inductances L", the original model machine arises (see figure 8).

The phase angle e represents the load angle of the "internal" machine.

Figure 8 The "internal" machine

In order to compute the steady-state of the synchronous machine with
rectifier, the constant parts of iq and ig, Ig and I4, have to be known.
These constant parts correspond with the basic harmonics of the armature
phase currents ((2.6)), so that according to (3.1) (Y = wt +7/2):

e o . _ =_\/3. : . i
Iq —\[;(1actcose lreaSIHE) ; Id 2(1act51ne<+1reacose) ( .5)

The set of eguations (2.3), (2.5),-(2:6), (3.9); (2:10), (4.2), 14.3),
(4.4) and (4.5) with dig/dt = dip/dt = dip/dt = diq/dt = digp/dt = 0,

LS =I&3= Ley, and Ry =0 gives a complete description of the steady-state
model of the synchronous machine. This set may be solved numerically.

5. THE DYNAMIC MODEL OF THE SYNCHRONOUS MACHINE WITH DIODE BRIDGE

In the dynamic model of the system, the description of the rectifier in

chapter 2 will be used (the ripple on the direct current is neglected).

Combining the model from this chapter (figure 5) and figure 2 results in
an equation for the de-circuit (for Ig2>0)

dI
g

—= {%/3e—(%mLC+Rg)Ig—Ub}/(Lg+2LC) (5.1)
As in chapter 4, in the phase currents of the synchronous machine only

the basic harmonics are taken into account. However, the amplitude, phase,
and angular frequency of these basic harmonics may vary now. So using
(2.6) and (4.5), it may be seen that Iq and I4 may vary. Hence, these
quantities are no longer the constant parts of i, and ig. Now, they may

be seen as short-term averaged parts of iq and ig4. These short-term

averaged currents are used in the synchronous machine equations.
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As may be seen in figure 7, the (averaged) currents through Lg4r, Lgp,
and LqQ might well be chosen as state variables:

IdF = Id * IF ; IdD = Id + ID H IqQ = Iq + IQ (5.:2)

Using these expressions and (4.2) with Ry =0 (Lg= Lg), after some
manipulations the sets of equations (3.9) and (3.10). become

S = U LT s by T oo+ R (T = ) | (5.3a)
QLS o = s = ’

Ul T SR PR s Y S R S ) (5.30)
dIQQ
T e T B (5.3c)
dms
—;ﬁ;—=[(LdD+LFD){uF—RF(IdF—Id)}—LFDRD(IdD—Id)J/(LdDLdF+LdDLFD+LFDLdF)(5.3d)
4D

at =[LFD{UF—RF(IdF_Id)}—(LdF+LFD)RD(IdD—Id)]/(LdDLdF+LdDLFD+LFDLdF)(5°3e)

The set of equations (2.3), (2.6), (4.4), (4.5), (5.1), and (5.3) gives

a description of the dynamic model of the synchronous machine with de-
link. This is a fourth order model with Ig, IqQ, I4r, and I4p as state
variables. Unfortunately on the moment of writing this paper, the author
had not found a method to give the differential equations in an explicit
form, so that the set of equations (2.3), (2.6), (4.4), (4.5), (5.3a),

and (5.3b) had to be solved numerically in each integration step. However,
when the Newton Raphson iteration method is used, this is not a real
problem, because the solution is found in only a few steps.

6. EXAMPLES

In order to give an impression of the value of this model, the transients
after a normal switch-on of a 20 kW system have been computed in two
different ways. In figure 9 some results of the computation using the
model presented here are given. These transients have been computed by
means of the simulation package ACSL on a personal computer. The compu-
tation time is about 80 s. In figure 10 the results of a detailed
simulation on a main-frame computer are presented [2]. In this case the
computation time was about 1000 s. Comparing these two figures, it may
be seen that the differences, except for the ripple in figure 10, are
very small. In order to spare computation time for the detailed
simulation, the rotor of the synchronous machine has been assumed to
rotate with a constant angular velocity.

7. CONCLUSION

In this paper a rather simple fourth-order dynamic model of a synchronous
machine with dec-link is presented. Using this model instead of a more
complex model for a detailed simulation results in an enormous reduction
of computation time at the expense of information about details, such as
harmonics on the phase currents and the ripple on the direct current.
However, short-term averaged values of the system variables are simulated
correctly.
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Figure 9 A normal switch-on, computed with the model presented here
(Computation time: 80 s on a personal computer)
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Figure 10 A normal switch-on, detailed simulation
(Computation time: 1000 s on a main-frame computer)
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