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Abstract

Two vectors with a physical meaning for the description of
AC machines are introduced. One represents the magneto-
motive force; the other represents the fundamental wave of
the air-gap flux density. These vectors are linked by means
of a simple network representation of the magnetic circuit,
in which salient poles may be considered. This network
representation also allows for modelling main flux saturation
in an easy way.

Keywords

AC machines, space vectors
1_Introduction

For the description of AC machines space phasors or space
vectors are often used. Originally, the vector for the current
(the magnetomotive force) was thé only vector with a physi-
cal meaning (Kovacs and Racs, [1]). Later, Stepina im-
proved the physical interpretation for some special cases. A
survey of literature on this field is given by him in [2).
Stepina pays special attention to dealing with space harmo-
nics in induction machines. :

In this paper, only the fundamental wave is considered. For
this case, two vectors with a physical meaning are used.
The first one is a vector representing the magnetomotive
force, while the second (new) one represents the fundamen-
tal wave of the air-gap flux density. Using these vectors,
models of AC machines may easily be derived. Especially
for the case of salient poles or main flux saturation, the
derivation is much more straight forward than conventional
derivations.

The essence of the presented method is the use of a simple
network representation of the magnetic circuit of the ma-
chine (Hopkinson's Law) and the use of symmetry in the
magnetic circuit of a salient pole machine. Using the new
vector description the conventional machine equations are
found, while Clarke components and the transformation from
a three-phase machine to a two-phase machine are intro-
duced in a natural way. The Park transformation also arises
automatically. ;

For educational purposes real vectors are used and not
complex quantities, because most students have problems
with the distinction between space and time phasors.
However, this choice is not essential. Besides, real vectors
may easily be used in the simulation program MATLAB/-
SIMULINK. ;

In the presented method, first the magnetomotive force is
computed from the stator and the rotor currents. Next, the
fundamental wave of the air-gap flux is obtained. Then, the
(main) flux linked with the windings follows. Finally, the
winding voltage equations are found by adding the leakage
flux and the winding resistance.

In section 2, the main steps of this process are described
for the stator, which is essentially the same for induction
and synchronous machines. Next, the basic equations for
an induction machine are derived. Finally, the principles of
the derivation of the salient-pole synchronous machine
equations are given.

2 The stator

In this setion we deal with two steps of the modelling
process, namely the computation of the magnetomotive
force caused by the stator currents and the relation between
the air-gap flux density and the (main) flux linkage of a
stator winding. Besides, some expressions for the electro-
magnetic torque are derived.

An important supposition in the modelling is that the stator
winding consists of three sinusoidally distributed windings
along the stator circumference in the air gap.

e's | | Law to the stator
We start with observing one stator winding (subscript 1),
which is sinusoidally distributed along the stator circumfe-
rence according to
Z (@) = 4sina,-a,) (1)
where Z, is the number of conductors per metre and a,
represents the axis of the winding (see figure 1).
Using Faraday’s integral law, an expression for the magne-
tomotive force caused by the current the winding i; may be
found:
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where ris the stator bore radius. This expression may be
simplified by using the total number of tums of the winding,
which is found by integrating (1):

Figure 1 The observed sinusoidally distributed winding
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This resulls in

@')da’ = 2r2, )

Fm1(as) = "':I M cos (G,—G.,)

The observed winding may be represented by the vector
A, which is in the direction of the axis of the winding and
the length of which corresponds with the total number of
turns, as is illustrated in figure 1.

The mmf vector Next, we introduce a vector for the mag-
netomotive force:

P = i ®

The length of this vector equals the maximum value of the
magnetomotive force (mmf) and the direction of the vector
is the direction of the maximum of the magnetomotive force:
the mmf is distributed cosinusoidally around this vector.

The three-phase stator winding Now, the mmf caused by
a three-phase stator winding may be found by a vector

addition (see figure 2):
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Figure 2 The stator winding vectors

Up to now, the vectors were not represented in a particular
coordinate system. When the stator coordinate system is
used (with a-axis and B-axis), the vector for the stator mmf
is
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Faraday's Law applied to the stator
To find an expression for the voltage induced in the winding

by means of Faraday's law, we need the flux linked with the
winding. In the first instance, the main flux is only consi-
dered. Thanks to symmetry properties, an arbitrary flux
density distribution in the air gap may be expressed by a
Fourier series:

Bay - g B, .y cOS((2m1) (A,-B o)) (5)

The flux linked with the arbitrary stator winding The
next step is to find the flux linked with one turn of the stator

winding. The flux linked with a turn with axis a =o' is given
by (see figure 3):
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Figure 3 A sinusoidally distributed winding with its
magnetic axis and the magnetic axis of a turn

Substituting the fourier series for the magnetic flux density
in the air gap B(a,) according to (5) gives

o'(a’) = 2/ry, B sin({2!r+1) E)oos((2k+1 ) (@' -Bape))
o 2k 2
Using the expression for the winding distribution (1), we may
find for the flux linked with the winding in figure 1 by integra-
tion:
ay+m

f z(ah-z"-')m’(aﬁ rda’ = g!rMB,cos(B1 -a) (6)

As we may see, the fundamental component of the air gap
flux density is the only component which contributes to the
flux linkage of a sinusoidally distributed winding.

"The flux vector The fundamental component of the flux

density distribution may be represented by the vector &,
which is in the direction of the maximum of the distribution
(B4) and the length of which corresponds with the maximum
of the flux density:

® = %lf& | )

The way in which the flux vector may be found will be
discussed in the sections 3 and 4. Now, the flux linkage for
the winding observed here (figure 1), which was given by (6)
may be written as a scalar product:

L T 6‘&;

The three-phase stator winding The fluxes linked with the
three stator windings may now be given by:

1] [P
w’m‘ = Nﬂ'6 = Nﬂ‘ . = N.fmﬂ‘
0] o,

Voms = Nop® = N:{““ ﬁ ,s) : ®)

Vopo = N0 - N,( m—— ,]

For the development of these emreséions the stator (af)




coordinate system has been used.

The stator voltage equations
and the Clarke transformation

To find the voltage equations for

the stator, the leakage flux and the
winding resistances have to be al-
lowed for. The leakage flux of one
phase winding is represented by
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the inductance L. The coupling
by the leakage flux between the
phase windings is accounted for in
the coefficient for mutual induc-
tance M, The coupling by the
leakage sﬁux between the stator
and the rotor is supposed to be
accounted for in the main flux. Using these assumptions and
the expressions (8), we find for the stator voltage equations:
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The voltage equations may be simplified by means of the
Clarke transformation. This simplification is based on the
fact that the air-gap behaviour of the machine is determined
by the two companents of the vectors & and F,,, as may
be seen in the equations (4) and (9).

Here, we use the normalized Clarke transformation accord-
ing to

1 Bt RER -

X.n x_ﬂ 2 2
xgl= €, x| with szﬁ 0 1va -lvs| (10)
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The basic elements of the transformation matrix automati-
cally arise from the equations (4) and (9).

Using the Clarke transformation, the expression for the mmf
vector (4) is simplified to:
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Because in most ac machines the star point connection is
not used, the sum of their phase currents is zero. So, there
are no zero components. Here, we pay no attention to the
zero components. However, when they are of interest, the
belonging equations may easily be added.
Using that the zero component of the stator currents is zero,
Wwe see in voltage equations (9) that the leakage inductance
seen in one phase obeys
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Using the Clarke transformation ((10)), the voltage equations
(9) now become: - '
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Figure 4 A schematic description of the stator
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Next, we also introduce vectors for the voltages, currents,
and flux linkages. These vectors do not have any physical
(spatial) meaning, what is in contrast with the vectors & and

The equations (11) and (12) may now be combined to the _
vector equations

»

d/ dy
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Using the Clarke transformation, this is a complete set of
equations for the three-phase stator winding, which is sche-
matically given in figure 4.

However, it is also a description of a semi-four-phase (or
two-phase) stator winding with /3/2 A/, turns, as depicted in
figure 5. This is a physically realizable stator.

Figure 5 The stator of a two-phase machine

The electrom torque

With the assumed stator winding distribution in the air gap,
the electromagnetic torque on the stator originates from the
Lorentz force caused by the interaction between stator cur-
rents and air-gap flux.

To find an expression for the torque, we start with the tan-
gential Lorentz force on a conductor with (core) length /and




current iy:

a,) = B(a,)!;l

This results in the moment of force

miay) = rBa )i/
on the stator.

The next step is to find the moment of force on the arbitrary
stator winding as depicted in figure 1 by integration:

2n

m = rli, [ Bla,) Z(a,) rda,
]

Substituting the expression for the winding distribution (1)
and the fourier series for the magnetic flux density in the air
gap B(a,) according to (5) gives

m = - PPli, Z Bsin(a,-B,)

From this expression, it becomes clear that only the funda-
mental component of the magnetic flux density contributes
to the moment of force.

If we write this expression as

m-=- [gr!&) (2rZ) i sin(a,-B,)

we can easily see that we can also write it as

m=-® N, j sinfa,-g,)

by using (2) and (7). This moment of force may be seen as
the vector product of A, and &:

m=-4i®xN,

or as the vector product (see (3))

m=-®x F,,

When we want to have the contribution of all stator
windings, we have to use the stator mmf vector. Besides,
we mostly want to know the electromagnetic torque on the
rotor (instead of the torque on the stator). This torque may
be expressed as:

7,-6x £,

ms
Since this torque vector only has a component in the
direction of the shaft, the scalar expression is mostly used:

T,=0,Fpg - OF,

B! msa

We may also write this as a scalar product: «

o -1
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With the expression of the mmf vector and the expression
for the main flux in (13), this may be worked out to

: . 0o -1 .
ro = (_ fm‘*snﬁ + f:ﬂq’sm) = [ [1 0] ?,M] . f“ (14)

3_The induction machine

Here, the induction machine is supposed to have the same
kind of windings on the rotor as on the stator.

For the stator, the equations (13) may directly be used. For
the rotor, the same equations may be used. However, the

subscript s has to be replaced by r and the equations are
valid in the rotor coordinate system, which is indicated by
the subscripts d and g
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For the addition of the mmf vectors from (13) and from (15),
we have to express them in the same coordinate system,
for example in the stator coordinate system. This may be
realized by means of the coordinate transformation accord-
ing to

Yo (16)

-C,,(p8) K" with c,“(pe}=°°s’°9 ~sinpo

A sinp9 cospd

where p is the number of pole pairs and 8 is the rotor posi-
tion angle. ' '
Using this transformation, the total mmf vector is given by

Frcs ™ Frcas * Frvas = (2 Nelwas * CrodO3N g (17)

Since the rotor of an induction machine is cylindrical, the
maximum of the flux density in the air gap is at the same
place as the maximum of the mmf. Hence, the mmf vector F,,
has the same direction as the flux vector ®. The relatlon
between the vectors may be expressed as:

6 [n (18)
A
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This expression is a spemal case of Hopkinson's law. In the
reluctance R, the main flux saturation may directly be incor-
porated. It should be noted that R, only depends on the
magnetic circuit of the machine and not on the numbers of
turns of tha windings.

Using the equations (13), (15), (16), (17), and (18) all well-
known sets of machine equations may be derived easily.
These equations are combined to the schematic description
of the induction machine in figure 6.

After defining the inductance coefficients

A N SNN,
Lyp= 2 S SR ;. M=2

for the main flux and the self-inductance coefficients
Ls = LSM * LSO : ;
we directly find from figure 6 for the induction machine:
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Woe can eliminate the rotation matrices in these equations
by expressing the rotor quantities in the stator coordinate
system by means of (16):
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Figure 6 A schematic description of the induction machine

A set of state s; uations
This set of equations may directly be written as the set of
state space equations

This set of state space equations may be used in any simu-
lation program after splitting the vectors into their compo-
nents. In the program MATLAB, however, these equations
may be used directly, because vectors are automatically

=0 R7 incorporated in MATLAB. ;
dt o When the MATLAB simulation tool box SIMULINK is used,
d¥, - -1 the block diagram in figure 7 is very appropriate. This block
“at - s~ Alrg * pw 1 oV > diagram directly follows from the equations (19).
(19) In this block diagram an expression for the electromagnetic
M M torque has been incorporated. This expression comes from
K ﬁup 7 ‘L—‘*M B ‘Ffm X Z“'m (14).
‘sap = - . v Ty = n : Here, the machine equations have only been_given for the
N oL stator coordinate system. They may easily be transformed
where the leakage factor o is given by to any other coordinate system, like for example the rotor
i= flux coordinate system for field oriented control.
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Figure 7 A block diagram of an induction machine
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4 The salient-pole synchronous machine

The basic idea of modelling a salient-pole synchronous ma-
chine is explained by means of a reluctance machine.

For the stator, the equations (13) may still be used. Since
a reluctance machine does not have windings on the rotor,
we only have to find the relation between the mmf vector
F,_ and the flux vector & in order to get a complete descrip-
tion of the electrical behaviour of a reluctance machine.
When the rotor of a machine is not cylindrical, the maximum
of the flux density in the air gap is not at the same place as
the maximum of the mmf. Hence, the mmf vector £, and
the flux vgctor & do not have the same direction. Here, the
mmf vector is resolved into two components (figure 8):

Fm o Fmd+ qu

Figure 8 A salient-pole machine

For each of these components the magnetic circuit is sym-
metric again. Hence, we may use a reluctance for the direct
axis and a reluctance for the quadrature axis:

Figure 9 A schematic description of a reluctance machine
in the rotor coordinate system
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As a result, the air-gap flux density may be expressed as
6 = Gd + a"q = Fmd + iﬂ
Hmd’ qu'

Main flux saturation may be incorporated in various ways in
the reluctances R, ;and R

Sinca we are only interested in the d and q components of
the mmf and the flux vector, the rotor coordinate system is
the most appropriate system for the description of a salient-
pole machine. For that reason we transform the stator equa-
tions (13) to the rotor coordinate system by means of (16):

. 0 -1 dy
asdq - H,!sﬁ+pm’{1 ]‘pﬂ*l+ d:'d?

o
'Fsdq = Lw?:dq + '?smob' (20}
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It should be noted that the Park transformation is automati-
cally found by using, successively, the Clarke transformation
according to (10) and the rotation transformation according

to (16).
After introducing the main flux inductances
3 3
Ly, = —;Nf ; L,,= ;N:
o) ' m
Hmd 7 Hm.q

equation (20) may be combined to a more usual, scalar
form:

. dy :
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The voltage equations are schematically depicted in figure
9.

Conclusion

In this paper, two vectors with a physical meaning for the
description of AC machines have been introduced. The first
one is a vector representing the magnetomotive force, while
the second (new) one represents the fundamental wave of
the air-gap flux density.

It has been shown that using these vectors, models of AC
machines may easily be derived. Especially for the case of
salient poles or main flux saturation, the derivation is much
more straight forward than conventional derivations.
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