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ABSTRACT

Two vectors with a physical meaning for the description of
AC machines are introduced. One represents the magneto-
motive force; the other represents the fundamental wave of
the air-gap flux density. These vectors are linked by means
of a simple network representation of the magnetic circuit, in
which salient poles may be considered. This network repre-
sentation aiso allows for modelling main flux saturation in an
gasy way.

1 INTRODUCTION

For the description of AC machines space phasors or space
vectors are often used. Originally, the vector for the current
(the magnetomotive force) was the only vector with a physi-
cal meaning (Kovacs and Racs, [1]). Later, Stepina improved
the physical interpretation for some special cases [2].

In this paper, two vectors with a physical meaning are used.
The first one is a vector representing the magnetomotive
force, while the second (new) one represents the fundamental
wave of the air-gap flux density. Using these vectors, models
of AC machines may easily be derived. Especially for the
case of salient poles or main flux saturation, the derivation is
much more straight forward than conventional derivations.
The essence of the presented method is the use of a simple
network representation of the magnetic circuit of the machine
(Hopkinson's Law) and the use of symmetry in the magnetic
circuit of a salient pole machine. Using the new vector des-
cription the conventional machine equations are found, while
Clarke components and the transformation from a three-phase
machine to a two-phase machine are introduced in a natural
way. The Park transformation also arises automatically.

For educational purposes real vectors are used and not com-
plex quantities, because most students have problems with the
distinction between space and time phasors. However, this
choice is not essential. Besides, real vectors may easily be
used in the simulation program MATLAB/SIMULINK.

In the presented method, first the magnetomotive force is
computed from the stator and the rotor currents. Next, the
fundamental wave of the air-gap flux is obtained. Then, the
(main) flux linked with the windings follows. Finally, the
winding voltage equations are found by adding the leakage
flux and the winding resistance.

In section 2, the main steps of this process concerning the air
gap field are described for a reluctance machine (no windings
on the rotor). In the next section the stator voltage equations
are derived. This is done in a general way, so that rotor
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currents are allowed for. Besides, some expressions for the
electromagnetic torque are derived.

In section 4, the basic equations for an induction machine are
derived. Finally, the developed theory is used to explain the
principles of the derivation of the salient-pole synchronous
machine (reluctance machine) equations, including the Park
transformation.

2 MAXWELL'S EQUATIONS APPLIED
TO A RELUCTANCE MACHINE

In this setion we deal with three steps of the modelling pro-
cess, namely the computation of the magnetomotive force
caused by the stator currents, a description of the air gap flux
density, and the relation between the air-gap flux density and
the (main) flux linkage of a stator winding for a reluctance
machine (no windings on the rotor).

An important supposition in the modelling is that the stator
winding consists of three sinusoidally distributed windings
along the stator circumference in the air gap.

Ampere's Integral Law applied to the stator

We start with observing one stator winding (subscript 1),
which is sinusoidally distributed along the stator circumfe-
rence according to

1

where Z, is the number of conductors per metre and o,
represents the axis of the winding (see figure 1). The angle
o is the air gap coordinate angle.

Using Faraday's integral law, an expression for the magne-
tomotive force caused by the current in the winding i; may

Figure 1 The observed sinusoidally distributed winding



be found:
Foi@) =iy [ Zfo)rda’ = 2ri,Z,cos(a,-a,)

&

where r is the stator bore radius. This expression may be

simplified by using the total number of turns of the winding,

which is found by integrating (1)
alwr

Ny =r [ Z(@)da’ = 202, @

This results in
Fpala,) =i, N cos(a,-ay)

The observed winding may be represented by the vector N,
which is in the direction of the axis of the winding and the
length of which corresponds with the total number of turns,
as is illustrated in figure 1.

The mmf vector Next, we introduce a vector for the
magnetomotive force:

F, =iN, G)

The length of this vector equals the maximum value of the
magnetomotive force (mmf) and the direction of the vector is
the direction of the maximum of the magnetomotive force:
the mmf is distributed cosinusoidally around this vector.

The three-phase stator winding Now, the mmf
caused by a three-phase stator winding may be found by a
vector addition (see figure 2):

Fms = isaNm + isbﬁ.i + isch
g

SC

Figure 2 The stator winding vectors

Up to now, the vectors were not represented in a particular
coordinate system. When the stator coordinate system is used
(with o-axis and B-axis), the vector for the stator mmf is

1 1
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The flux density in the air gap

The next step is to give a description of the flux density in
the air gap. For this description, we may use the symmetry of
the rotor. Therefore, the mmf vector is resolved into two
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components, one in the direction of the direct axis and one in
the direction of the quadrature axis (figure 3):
F,=F ;+ Fm 4

m

Figure 3 The stator and the rotor coordinate system

The mmf comresponding with the vector F'm’ 4 will cause a
flux density distribution in the air gap with the maximum in
the direct axis.

For the further development, we use the relation between the
stator and the rotor coordinate system (see figure 3)

a =a + pf &)
where p is the number of pole pairs and 0 is the rotor posi-
tion angle. So, this maximum is at ¢,=0 (o,=p9).

Thanks to symmetry properties, the flux density distribution
may be expressed by a Fourier series:
Ble,) = 3 Emﬂ’dcos((?ln+l)ar) (6)

m=0

where the Fourier coefficicients B,,,
the magnitude of F_ "

A similar expression may be found for the quadrature axis.

are proportional to

Faraday's Law applied to the stator

_ To find an expression for the voltage induced in the winding
~ by means of Faraday's law, we need the flux linked with the
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winding. In the first instance, the main flux caused by the
direct-axis component of the mmf vector F'm’ 4 1s only consi-
dered.

Using (§), the contribution according to (6) becomes in the
stator coordinate system

B,la) = 24} Bm+1, 4cos((2m+1)(a,-pb))

(M

The flux linked with a stator winding The next step
is to find the flux linked with one turn of the stator winding

of phase a with N; windings (see figure 4).
The flux linked with a turn with axis a=0o' is given by

A

2
o) = [ Ba)irda

o7
2

where [ is the core length.
Substituting the fourier series for the magnetic flux density in
the air gap B(a,) according to (7) gives



Figure 4 The winding of phase a with its magnetic
axis and the magnetic axis of a turn

= B
non o und (o) T el
O fa!) = 21rk§£ ——+—1~sm((2k 1)—2 )cos((Zk 1)(a’-p8))

Using the expression for the winding distribution (1) with
o,=0, we may find for the (main) flux linked with phase a by
integration:

®

Vo f Z(a +—)<I>d(o/)rda’ 5 Z1rN B, joospd
As we may see, the fundamental component of the air gap
flux density is the only component which contributes to the

flux linkage of a sinusoidally distributed winding.

The flux vector The fundamental component of the
flux density distribution may be represented by the vector
& 20 which is in the direction of the maximum of the distribu-
tion (p9) and the length of which corresponds with the maxi-
mum of the flux density:

(€)

Now, the flux linkage for phase a, which is given by (8) may
be written as a scalar product:

Voma = SN,

Hopkinson's Law Because the Fourier coefficicient B

is proportional to the magnitude of F, , and the vectors e
and 5 have the same direction (the direct axis), the vector
is proportlonal to the vector F ma (see figure 5). This may be
expressed as:
5, - Fus

¢ R
This expression is a special case of Hopkinson's law, It
should be noted that R,,, only depends on the magnetic cir-
cuit of the machine and not on the numbers of turns of the
windings.
For the main flux caused by the quadrature-axis component
of the mmf vector F a similar expression as (11) follows.
As a result, the fundamental component of the air-gap flux
density may be expressed as

1
(Pd = ;‘ﬂ'lrﬁhd

(10)

(1)

md

@:(ﬁd+(§q=§"ﬁ+% (12)
md mq
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Figure 5 The reluctance rotor

Main flux saturation may be incorporated in various ways in
the reluctances R, ; and R4

The three-phase stator winding In a similar way as
in (10), the fluxes linked with the three stator windings may

now be given by:

1] [®.
Yo, = N, ® = NH =N,®,
0 CDB
V3 13
‘pxmbzﬁw.@:N(_EQ 2 ﬂ) ( )
N d-N[1le_ V3
‘Ilsmc - Nx 5 Ns( 24) 2 B)

For the development of these expressions the stator (of))
coordinate system has been used.

3 THE STATOR EQUATIONS

In this section the stator voltage equations are derived in a
general way, so that rotor currents may exist. Besides, some
expressions for the electromagnetic torque are derived.

The stator voltage equations and the Clarke transformation

To find the voltage equations for the stator, the leakage flux
and the winding resistances have to be allowed for. The lea-
kage flux of one phase winding is represented by the induc-
tance L,,. The coupling by the leakage flux between the
phase windings is accounted for in the coefficient for mutual
inductance M,,. The coupling by the leakage flux between
the stator and the rotor is supposed to be accounted for in the
main flux. Using these assumptions and the expressions (13),
we find for the stator voltage equations:

usa isa L:aa Msaab A[saab i.m
Uy =Rs isb + Mwab L.wa Msaab Edt' isb
Ug isc Msoab Msaab L.wa is:
(14)
1 0
11 @,
N2 2¥3 < °
-1 1ly3 £
2 2

The voltage equations may be simplified by means of the
Clarke transformation. This simplification is based on the fact



that the air-gap behaviour of the machine is determined by
the two components of the vectors ® and F _, as may be
seen in the equations (4) and (14).

Here, we use the normalized Clarke transformation:

1 1
LA S S
. V2 1 1
x| = Cpy [Xp| With Cyp = 7 0 ~v3 -v3 (15
50 e va lva iz
2 2 2

The basic elements of the transformation matrix automatically
arise from the equations (4) and (14).
Using the Clarke transformation, the expression for the mmf
vector (4) is simplified to:
F, \/3N Lia
msaf s ig
Because in most ac machines the star point connection is not
used, there are no zero components. Here, we pay no atten-
tion to the zero components. However, when they are of inte-
rest, the belonging equations may casily be added.
Using that the zero component of the stator currents is zero,
we see in voltage equations (14) that the leakage inductance
seen in one phase obeys

B M:oab

Using the Clarke transformation ((15)), the voltage equations
(14) now become:

(16)

LSU = L:d

a

) d, v3 do,
u,=Ri_ +L, + —N
o d V2

di do
usﬁ = Rsisﬁ * Lsa d-ftﬁ * %N:_dté
Next, we also introduce vectors for the voltages, currents, and
flux linkages. These vectors do not have any physical (spa-
tial) meaning, what is in contrast with the vectors ¢ and F’ .
The equations (16) and (17) may now be combined to the
vector equations

an

od dlsaﬂ N d‘nsmaﬁ

uaﬂ:R:lsaB+LSa dr dr

_fAnr . _ 3
Fms,aﬁ - \/;Nslsaﬁ ’ qisma,@ - \/"Z:Nséaﬁ
Using the Clarke transformation, this is a complete set of
equations for the three-phase stator winding, which is sche-
matically given in figure 6.

(18)

It should be noted that the flux vector o I (18) may also
have contributions from rotor currents.

However, it is also a description of a semi-four-phase (or
two-phase) stator winding with /3/2N turns, as depicted in
figure 7. This is a physically realizable stator.

Figure 7 The stator of a two-phase machine

The electromagnetic torque

With the assumed stator winding distribution in the air gap,
the electromagnetic torque on the stator originates from the
Lorentz force caused by the interaction between stator cur-
rents and air-gap flux.
To find an expression for the torque, we start with the tan-
gential Lorentz force on a conductor with (core) length / and
current iy: Fla,)=B(a,)i,[. This results in the moment of
force m(a)=rB (a: i,{ on the stator.
The next step is to find the moment of force on the arbitrary
stator winding as depicted in figure 1 by integration:

2%

m = rliy [B(a,)Z,(e,)r da,
0

Substituting the expression for the winding distribution (1)
and the fourier series for the magnetic flux density in the air
gap B(o,) according to (7) gives

m = - rli,Z, B, wsin(a,-B;)

From this expression, it becomes clear that only the funda-
mental component of the magnetic flux density contributes to
the moment of force. If we write this expression as

-~ R
\au LSG
-
‘\/‘?N Fmsaﬂ
- 2 Ns
Magn
lsaf . gn-
circuit Vsag
? - — - |- — o= 7?7

Figure 6 A schematic description of the stator
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m= - (%rlﬁl) (ZrZI) I sin(al-ﬁl)

we can easily see that we can also write it
as

m = - ® N, i, sinfa;-B,)
by using (2) and (9). This moment of
force may be seen as the vector product

of N, and &: - & x N,

m

or as the vector product (see (3))

Wi=-®xF,,



When we want to have the contribution of all stator windings,
we have to use the stator mmf vector. Besides, we mostly
want to know the electromagnetic torque on the rotor (instead
of the torque on the stator). This torque may be expressed as

T -8 xF,

Since this torque vector only has a component in the direction
of the shaft, the scalar expression is mostly used:

T,=9,F, .- ®F

a® msp B* msa

We may also write this as a scalar product:

el o)
e 1 0 ms

With the expression of the mmf vector and the expression for
the main flux in (18), this may be worked out to

0 -1
s 19
10 ‘p’"“"’) a1

Tc = (_ isa smp * isﬂ\l’sma) = (

4 THE INDUCTION MACHINE

Here, the induction machine is supposed to have the same
kind of windings on the rotor as on the stator.

For the stator, the equations (18) may directly be used. For
the rotor, the same equations may be used. However, the sub-
script s has to be replaced by r and the equations are valid in
the rotor (dg) coordinate system:

- di, d
ﬁrdq = Rr irdq * Lra . ‘prmdq

V3 & & 0
Fmr,dq ‘/2 er > ‘T’rmdq ‘/2 Nr(ﬁdq

For the addition of the mmf vectors from (18) and from (20),
we have to express them in the same coordinate system, for

example in the stator coordinate system. This may be realized
by means of the coordinate transformation according to

X X

cospd -sinpé]

1= Crsp8) @b
*p q

Using this transformation, the total mmf vector is given by

= 3 ad 3 d
onp* Foures = \/;st, " cm,(po)\/;N,zrdq (22)

Since the rotor of an induction machine is cylindrical, the
maximum of the flux density in the air gap is at the same
place as the maximum of the mmf. Hence, the mmf vector
F_ has the same direction as the flux vector &:

@:i
R

Using the equations (18), (20), (21), (22), and (23) all well-
known sets of machine equations may be derived easily.
These equations are combined to the schematic description of
the induction machine in figure 8.

After defining the inductance coefficients

with C_ (p8) =

sinpf cospd

F

maB:F

m

(23

IN? 3IN? 3NN
- 2 _ 2 .2 5T
sm Rm 4 rm Rm 4 Rm

for the main flux and the self-inductance coefficients
LS = LSM + LSU ; LI‘ = er * Lra
we directly find from figure 8 for the induction machine:
1]? Lssz MCm,(p0)f;dq
‘]i Lrlrdq+ Cm‘(-p o)Ml_.;aﬁ

d‘p.mB

- dy,
. v . dgq
U p= R:l:a8+ & ; —_—

d‘dq=R,i,dq +

We can eliminate the rotation matrices in these equations by

Rs

| V’saaﬁ '
3 d
5 } \/;Ns - ~ 5 ——é}-_}——
Isag | ! Wsmaﬁ wsaﬂ Usap
| !
l |
| l
| 1 |
- - > - -
Irdq \/3N !Fmrdq édq { \/SN 'wrmdq Wrdq g
2'r L ] 27 dt i\ Urdq
——————————— -
Magn. circuit Vradq
- Lo
Rr

Figure 8 A schematic description of the induction machine
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expressing the rotor quantities in the stator coordinate system
by means of (21):

qjsaﬁ = Lsisaﬁ * era,B 3 wraﬁzMisa,BJrLriraB

I + d.qisaﬂ

A set of state space equations

This set of equations may directly be written as the set of
state space equations

dy -
saff _ o ¥
de - usa,B - Rsl:aﬂ
dy - 0 -1
raf _ - _ :
w A ermﬁ +pw,, 1 O]ﬂr_’mﬁ (24)
M M
B qjsap - fq},ag . q}raﬁ - Z"q}gaﬁ
R e R
MZ
where the leakage factor ¢ is givenby o =1 - I

This set of state space equations may be used in any simula-
tion program after splitting the vectors into their components.
In the program MATLAB, however, these equations may be
used directly, because vectors are automatically incorporated
in MATLAB.

When the MATLAB simulation tool box SIMULINK is used,
the block diagram in figure 9 is very appropriate. This block
diagram directly follows from the equations (24). In this
block diagram an expression for the electromagnetic torque
has been incorporated. This expression comes from (19).
Here, the machine equations have only been given for the
stator coordinate system. They may easily be transformed to
any other coordinate system, like for example the rotor flux
coordinate system for field oriented control.

5 THE SALIENT-POLE SYNCHRONOUS MACHINE

The basic idea of modelling a salient-pole synchronous ma-
chine is explained by means of the reluctance machine.

R,

4

Usag . f L 1

For the stator, the equations (18) may still be used. Besides,
we may use the relation between the mmf vector F’ and the
flux vector ® (12) in order to get a complete descnptlon of
the electrical behaviour of a reluctance machine.

Since we are only interested in the d and g components of the
mmf and the flux vector, the rotor coordinate system is the
most appropriate system for the description of a salient-pole
machine. For that reason we transform the stator equations
(18) to the rotor coordinate system by means of (21):

0 -1 dg
o =R sdq
Uiy = Rifsg * POmly dt
. 25
q‘}sdq :Lsalsdq * qjsmdq ( )
Fo-Byr o g By

It should be noted that the Park transformation is automatical-
ly found by using, successively, the Clarke transformation ac-
cording to (15) and the rotation transformation to (21).
After introducing the main flux inductances

IN? AN}

L _ 2 s . L _ 2 5
d ’ m

" R, “ R,

equation (25) may be combined to a more usual, scalar form:

. dy .
u;=Ri;-pw, ¥, + Fd s w.=Ri +pw P+

q
dr
Yy = Loty + Wy, = Loy + Ly,

lpq = LSD'lq * q’qm = Lé'ﬂlq + Lqml

CONCLUSION

In this paper, two vectors with a physical meaning for the
description of AC machines have been introduced. The first
one is a vector representing the magnetomotive force, while
the second (new) one represents the fundamental wave of the
air-gap flux density.
It has been shown that using these vectors, models of AC
machines may easily be derived. Especially for the case of
salient poles or main flux sa-
turation, the derivation is
much more straight forward
than conventional derivations.

— 8 lsag
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Figure 9 A block diagram of an induction machine
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