HARMONIC ANALYSIS OF A PM MACHINE WITH RECTIFIER

H. Polinder, M.J. Hoeijmakers, W. Deleroi
Delft University of Technology
Faculty of Electrical Engineering, Group VEEM
PO Box 5031, 2600 GA Delft, The Netherlands
E-mail: H.Polinder@Et. TUDelft.NL

Abstract

This paper describes a method to calculate the steady-state
performance of a permanent-magnet (PM) generator with
six-pulse controlled rectifier without considering the transient
interval. The calculation method solves the machine
equations by means of Fourier analysis.

This calculation method uses frequency-dependent
operational inductances (operational impedances), which are
determined by means of simple locked-rotor tests. Using
these operational inductances has the advantage, that the
total losses (including iron losses and eddy current losses
in magnets) due to the harmonics of the stator currents are
calculated rather accurately. These losses form a
considerable part of the total losses, and they are seriously
underestimated if only the copper losses are considered.
Measurements show the validity of the calculation method.
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1 Introduction

The aim of the research project’ is the development of a
high speed, high efficiency generator system, intended for
use in series-hybrid vehicles, the drive system of which is
depicted in figure 1. The combustion engine is a high-speed
gas turbine, the advantage of which is that it has lower
emissions than other combustion engines. The generator is
a permanent-magnet (PM) machine, because of its high
efficiency, reliability, high power density, and the possibilities
for high speed. For the same reasons, the rectifier is a six-
pulse controlled rectifier.

The generator system can also be applied in alrcraﬂ
vessels, and mobile ground power stations.
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Figure 1: The drive system of a series-hybrid car, consisting
of gas turbine, PM generator, rectifier, accumulator, inverter
and motor.

This paper describes a method to calculate the steady-state
performance of the PM generator with rectifier, depicted in
figure 2. The calculation method, introduced in [1]-[3], solves
the machine equations by means of Fourier analysis.

Two important advantageous characteristics of this method
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are the following. First, the steady-state performance can be

calculated without considering the transient interval. Second,

frequency-dependent machine parameters can be used.

This paper adds the following four significant aspects to this

calculation method.

1) As in [4], it is proposed to use measured, frequency-
dependent operational inductances, which has two
important advantages:

- It is not necessary to derive frequency-dependent
machine parameters from (complicated) machine
models, as is done in [2]-[3]. Instead, we use easily
measured operational inductances.

- The losses due to the harmonics of the stator
currents are calculated rather accurately, including
the losses due to eddy currents in iron and magnets.

2) For this method, it is necessary to split the machine
voltages into a voltage across an external inductance
and an internal voltage. In [1]-[3], no attention is paid to
the choice of this external inductance. This paper
introduces a sensible choice of this external inductance.

3) The calculation method uses the no-load voltage. It is
proposed to use the measured no-load voltage (which is
not sinusoidal), instead of a calculated sinusoidal no-
load voltage as in [2]-[4].

4) This paper shows that this calculation method can also
be used for PM machines.

The method enables calculations with small inductances in

the DC-circuit [1]-[4]. However, in this paper we consider the

case with an infinitely large inductance in the DC-circuit,
because this is enough to describe the principles of the
calculation method.

As might be expected of a calculation method for

synchronous machines, the method considers different

direct-axis and quadrature-axis inductances [2]-[4].

However, the PM machine has a cylindrical rotor with

surface-mounted magnets. Therefore, the difference

between the inductances of the direct-axis and the
quadrature-axis is small and is neglected in this paper.
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Figure 2: The PM generator with controlled rectifier.




Structure of the paper
This paper has the following structure. First, section 2

introduces the voltage equations of the PM machine using
operational inductances. Next, section 3 describes the
determination of the operational inductances of the PM
machine by means of measurements. Further, section 4
describes the calculation method. In section 5, the results of
the calculation method are compared to a measurement.
We close in section 6 with some conclusions.

2 Voltage equations with operational inductances

The exptession for voltage u of the stator phases a, b, and
c is given by

v le, A v,

AN ;;,,% v, (1)
u, emj lf’c V.

where

e, is the no-load voltage,

i is the phase current,

A, is the resistance of a stator phase winding, and

¥ is the part of the flux linked with a stator phase winding
dependent on the stator currents,

In this equation, the flux linked with the stator phase

windings was split into two parts:

1) A part ¢ dependent on the stator currents, This part
includes the flux due ‘o the stator currents, but also the
fluxes due to the rotor currents which are induced by the
stator currents. These rotor currents are eddy currents
and damper currents if a damper would be present.

2) A part independent from the stator currents and
dependent on the magnetization of the magnets. The
time derivative of this part is the no-load voltage e,

In the rest of this paper, the measured no-load voitage e,

(which is not sinusoidal) is used for the no-load voltage.

The stator quantities can be rotated to the rotor connected

dg-system by means of the well-known Park transformation

[5]. In its normalized form, this transformation is given by
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where
6 is the rotor position angle or the spatial angle between
the direct-axis and the axis of stator phase a, and

p is the number of pole-pairs of the machine.
Because there is no star-point connection, the zero-
components are always zero and are omitted in this paper.
Application of the Park transformation to the voltage
equation (1), resuits in

d
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dy,
Uy = 8p+ Ay ——7 ar T4pw, ¥,
where w , is the constant angular speed of the rotor.

Using the Fourier transformation, this equation changes into
Ufw) = & (0)+Alfw)rjoy (©)-po,i (o)

o 4

Ufw) = 8, (0)+A(w)+joy (0)+pw Y ()
The fluxes in lhis_ equation can be written as
Y [w) = L f0)/fw)

. 5
¥ () = L (0)/(w)
where
L () is the direct-axis operational inductance, and
L {w) is the quadrature-axis operational inductance.
Stbstitution of this expression in equation (4), gives
Ufw) = e fw){Arjol (@))i{w)-pw,L (©)](w) .

ufw} =g (m} { Hwl (m)}z (w)+pw La(w}fd(w)

The imaginary part of the operational inductances
represents the rotor losses. It is assumed that the stator is
without losses, except for the stator copper losses.

As described in [4] and [5), operational impedances are
used since 1929. In this paper and in [4], the term
operational inductance is preferred and used, because these
operational inductances give a relation between the current
and the flux.

3 Determination of operational inductances

Locked-rotor voltage equations

The operational inductances are determined by means of
locked-rotor tests. If the machine does not rotate, w,=0is
valid and the no-load voitage e, is zero. If this is used in the
voltage equation (8}, the voltage equation becomes:

yfw) = (Aol o))

(7)
Ufw) = (A+jol (@)} ()
Direct-axis operational inductance
For the determination of the direct-axis operational
inductance L a(w} . the rotor is placed so that the quadrature-
axis coincides with the axis of stator phase a (p8=7/2). A
voltage is supplied to the stator phases b and ¢, which are
connected in series as depicted in figure 3. In this way, the
direct-axis coincides with the armature winding field axis.

Figure 3: The measurement circuit for the determination of
the operational inductances.

During the measurements, /,=/, /,=-/, and u,- v = u (figure
3). With the Park transformation (2), the dg-components of
the currents and voltages are calculated. If these dg-
components are substituted in equation (7), we obtain
Uw) = Aol [w)}{w)

2(A,- wIm(L f0))+jwRe(L fw)} ) ®
{Adw)+jw L fw)}{w)

where



9)
Lfw) = 2Re(L fw)) (10)

So, the determination of the direct-axis operational
inductance L (w) comes to the determination of an
impedance AJ[w)+jwL (w). To determine this impedance,
the measuring circuit of figure 3 is supplied by a sinusoidal
voltage source, the frequency and the amplitude of which
are adjustable. The applied voltage U, the current /, and the
active power P are measured. From this, the impedance
can be calculated.

Afw) = 2A;-20IiM(L (@)

Quadrature-axis operational inductance
For the determination of the quadrature-axis operational

inductance L (w), the rotor is placed so that the direct-axis
coincides with the axis of phase a (p8=0). A voltage is
supplied to the stator phases b and ¢, which are connected
in series as depicted in figure 3. In this way, the quadrature-
axis coincides with the armature winding field axis.

In the same way as for the determination of the direct-axis
operational inductance, the determination of the quadrature-
axis operational inductance comes to the determination of
an impedance F:’q(m) +joLl (). This impedance is
measured in the same way as for the direct-axis operational
inductance.

Discussion of the resuits

Figure 4 gives the measured impedances in the direct- and
quadrature-axis as a function of the frequency for different
current amplitudes.

As can be seen in figure 4, the direct-axis operational
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inductance is a little smaller than the quadrature-axis
operational inductance. However, the differences between
the direct-axis and the quadrature-axis operational
inductances are small, because the machine has a
cylindrical rotor with surface-mounted magnets. Therefore,
as already mentioned in the Introduction (section 1), in the
rest of this paper, it is assumed that the direct-axis and the
quadrature-axis operational inductances are equal:

Lfw) = Lq{w) = L(w) (11)

The value of the operational inductance L(w) is determined
by taking the average of the measured values for the direct-
axis and the quadrature-axis operational inductance.

At each frequency, the voltage, the current, and the power
were measured for different root-mean-square values of the
current. This was done, because hysteresis may cause
different results at different values of the current. As can be
seen in figure 4, there are differences: the larger the
amplitude of the current, the larger the measured
inductance. The amplitudes of the currents during rectifier
operation are large. Therefore, in the calculation of the
steady-state performance of the machine with rectifier, the
values measured at the largest current amplitude are used.
The lines in figure 4 represent the values of the impedance
used in the calculation method.

As mentioned in section 2, the imaginary part of the
operational inductance represents the rotor losses. In the
PM machine, the rotor losses consist of iron losses and
eddy current losses in the magnets. However, it should be
realized that a part of the measured losses arises in the
stator iron and contributes to the imaginary part of the
operational inductance.
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Figure 4: Measured impedance as a function of the frequency in the direct- and quadrature-axis for different currents (+: I=0.2A,
x: I=0.5A, o: I=1A, *: [=2A, +: I=5A), and the values used in the calculation method (—).



4 Calculation method

Before explaining the calculation method, this section
describes the used Fourier series and steady-state voltage
equations. It closes with a discussion about the choice of
the external inductance.

Fourier series

In the calculation method described in this paper, Fourier
series are used in the following way.

If A#) is a periodic function of time with period T, it can be
written as a Fourier series with Fourier coefficients 7 :

® wT

_ Z Fel™ with 7 - lfﬁﬂe_]m'rdt (12)
n--mw n n r#x

where w,=2m/T7 is the angular frequency of the fundamental

component of the periodic signal 7).

Steady-state voltage equations using Fourier series

The calculation method considers the steady-state
performance of a PM machine with rectifier. This implies the
following three things.

1) The rotor rotates synchronously:

po,, (13)
2) The stator three stator currents are equal except for a
time shift:

i, =

This is also valid for the voltages and the fluxes.

The currents, the fluxes and the voltages do not contain
even harmonics, because there is half wave symmetry.
They also do not contain harmonics of which the
harmonic number is an integer multiple of three,
because there is no star-point connection. Therefore, the
current and the voltage of phase a can be written as the
following Fourier series:

.{b(mtl-fn) = i{w,-3m) (14)

3)

(15)

Usmg (14), the currents of the phases b and c are
expressed as Fourier series with the Fourier coefficients
of the current of phase a. These currents are rotated to
the dg-system by means of the Park transformation (2).
The result is a Fourier series for the current in the dg-
system, which only contains harmonics of which the
harmonic number is an integer multiple of six:
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This is also valid for the voltages and the fluxes.

In the voltage equation in the dg-system (3), all quantities
are written as Fourier series, while it is used that this
equation only contains harmonics of which the harmonic
number is an integer multiple of six:

oy _ - Byt
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(18)

66

ya{s.q = 'e,pd.ﬁ.".l+ ﬁ-’ids +16m1m0’6n_m‘iqﬁn

q&n = 'é ]5!?&)1_11[ m“ﬂ[dﬂn

The fluxes in thls equatlon can be replaced by operational
inductances multiplied by currents (as in (6)):

(19)
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If these Fourier coefficients are subst:tuied in the Fourier
series of equation (18), and equation (18) is transformed
back with the inverse Park transformation (2), the resultrng
voltage of phase a is: :

Br1)w, : (81wt |
E ﬁqsnde} ej !
e (21)
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Description of the calculation method
Figure 5, which depicts a schematic drawing of the PM

machine with controlled rectifier, is used for the explanation
of the calculation method.

Figure 5 depicts a current source /. in the DC-circuit,
because we consider the case with an infinitely large
inductance in the DC-circuit (as mentioned in section 1).
For the calculation method, it is necessary to split the
machine voltage into a voltage over an external inductance
L, and an internal voltage e, as indicated in figure 5:

ds,
dt

If the Fourier series for the current (15) and the voltage (21)
are substituted in this equation, we obtain

6,=u-L,—* (22)
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Figure 5: Model of the PM machine with rectifier,

Figure 6 depicts a stylized current i, of phase a. In this
figure, the delay angle a, and the overlap angle u are
given, which are constant |n steady-state.

Steady-state performance implies that it is enough to
consider one period. During this period, phase a
commutates four times. In figure 6, the four commutation



intervals are numbered | to IV. Table 1 gives the time
derivative of the current , during the commutation intervals.
Table 1 also shows which thyristors are conducting during
the four commutation intervals. If phase a is not
commutating, the time derivative of the current J, is zero,
because of the infinitely large inductance in the DC-circuit.

i (A)

e

Badl 1V
Figure 6: The stylized current i, of phase a and the
commutation intervals.

Table 1: The time derivative of the current during the
commutation intervals.
Interval Conducting i di,
. 2 4
thyristors 4t
! A S Q1< U1 T Ts T €€
i QIS @, 1<A T Tu T Ts &8,
I ap+§1[$ m‘f<0p+p+§ﬂ Ta T T e, e,
i a;%n-s w1t<ap+u+§ﬂ To T2 T €5

Using table 1, the time derivative of i, is given by

2Le%f—.; = (e;-e,)(Pw,H+*Aw,t-m))

+ (e,-8,)(Plw, +-2m)+plw, +->m))

where the pulse function p(w,f) is 1 during commutation
interval | of table 1 and zero everywhere else:

(24)

1 1
1 when --m+a <w,f<-_m+a

Aol = (25)
‘ 0  when —-ma u<,t<Ima,
which can be written as a Fourier series:
= o . _ jrag
p= n{; pe with 2 = r#fope dt (26)

In equation (24), the current, the internal voltages, and the
pulse functicn are replaced by Fourier series (the equations
(15), (23), and (26) respectively). The result is an equation
with multiplications of Fourier series (convolutions). From
this, the harmonics of the current are determined as

2jem1)wl ]
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2j(6n—1}m!.,2&6n :

= ln }
p= a3
- 6‘2 46#—1ﬂain-ﬂ+eqﬁb1e pﬁ(n K2

which follows after some calculation work.

(27)
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If the Fourier coefficients of equation (23) are substituted in
this equation, the only unknowns in this equation are the
Fourier coefficients of the current. For a finite number of
harmonics, the set of equations can be solved, because the
number of equations is equal to the number of unknown
Fourier coefficients of the current.

In this calculation method, it is assumed that the delay
angle a, and the overlap angle u are known; if this is not
the case, it is necessary to iterate to the right values.

On the choice of the external inductance L,

In [1}[3], no attention is paid to the choice of the external
inductance. The external inductance L, should be chosen
equal to the commutation inductance. If this is done, the
term L(6nw,)-L, in equation (23) is very small for the
important harmonics. This improves the numerical accuracy
of the calculation process.

If this external inductance is used, the internal voltage e
becomes a smooth function of time. All jumps in the
terminal voltage due to commutation are included in the
voltage drop across the external inductance L, In the
extreme case that A,=0 and L(6rw,)-L,=0 are valid for all
frequencies, the internal voltage e becomes equal to the no-
load voltage e,. In this case, the harmonics of the current
can be solved direct from equation (27), which results in a
very accurate calculation process.

5 Results

Measured wave-forms

The measured frequency-dependent operational inductances
(depicted in figure 4) were used in the calculation of the
steady-state performance of the machine with rectifier.
Figure 7 depicts both measurements and calculations of
phase current and line voltage waveforms. Both for the line
voltage and the phase current the agreement is very good,
which shows the validity of the calculation method.

Losses due to harmonics

As mentioned in section 2, the imaginary part of the
operational inductance represents the rotor losses. This
means that the losses during operation with rectifier are
calculated on the assumption that all losses (except for the
stator copper losses) arise in the rotor. However, during the
measurements of the operational inductances, a part of the
losses arises in the stator iron and contributes to the
imaginary part of the operational inductance. Therefore,
using operational inductances to calculate the losses, gives
inaccurate results.

The reason that these results are inaccurate is that the
frequencies experienced by the stator and the rotor are
equal during the measurements, while they are different
during operation with rectifier.

However, for the harmonics of the stator currents during
rectifier operation, the frequencies experienced by the stator
and the rotor are nearly equal. Therefore, the losses due to
the harmonics (including iron losses and eddy current losses
in the magnets) are calculated with a small error.

For the fundamental component during rectifier operation,
the frequency experienced by the rotor is zero, while the
frequency experienced by the stator is the fundamental
frequency. Therefore, the iron losses in the stator due to the
permanent magnet excitation and due to the fundamental
component of the stator currents are not calculated.

* However, literature, e.g. [6], gives methods to calculate

these losses.
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Figure 7: The measured and one period of the calculated line voltage u,,=u,- u, (figure a) and phase current Iy (figure b). The
measurements are drawn dashed (- -), the calculations solid (——).

With the calculation method described in this paper, the
losses due to the harmonics of the stator currents in the
situation of figure 7 are calculated as 63 W. For
comparison: the copper losses due to the harmonics of the
stator currents are calculated as 4.2 W. This shows that the
losses due to the harmonics of the stator currents in a PM
machine are seriously underestimated if only the copper
losses are considered. The big difference is formed by the
iron losses and the eddy current losses in the magnets,
which are considered if operational inductar.ces are used.
The copper losses due to the fundamental components of
the stator currents are calculated as 82 W. This shows that
the losses due to the harmonics of the stator currents form
a considerable part of the losses.

6 Conclusions

A method to calculate the steady-state performance of a PM
machine with controlled rectifier is introduced. This method
has the important advantage that it uses frequency-
dependent operational inductances, which can be
determined by means of simple measurements.

With this method, the losses (including the iron losses and
the eddy current losses in the magnets) due to the
harmonics of the stator currents are determined rather
accurately. During steady-state operation of a PM machine
with rectifier, these losses form a considerable part of the
losses, and are seriously underestimated if only the copper
losses are considered.

For this method, it is necessary to split the machine

voltages into a voltage across an external inductance and
an internal voltage. It is sensible to choose the external
inductance equal to the commutation inductance.
Measurements of current and voltage waveforms show the
validity of the calculation method.
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