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Abstract - The aim of the research project this paper
arises from, is the development of a high-speed,
high-efficiency generator system for use in series-
hybrid vehicles. This paper describes an analytic
method for the two-dimensional calculation of the
magnetic field in the cylindrical air gap of the
permanent-magnet generator. Further, it introduces
a method to visualize this field, namely by plotting
the lines of constant magnetic vector potential. To
show that the calculated magnetic field may form the
basis of a machine model, the voltage equations are
derived. The proposed analytic method gives insight
into the relations between dimensions and
parameters of the machine, which is important when
optimizing the design.

|. INTRODUCTION
A. The research project

This paper describes a part of a research project, the
aim of which is the development of a gas turbine driven
high-speed, high-efficiency generator system. This
generator system is intended for use in series-hybrid
vehicles. Figure 1 depicts the drive system of a series-
hybrid vehicle. The generator system can also be
applied, for example, in aircraft, in vessels, in mobile
ground power stations, and in total energy units.
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Figure 1: The drive systern of a series-hybrid vehicle, consisting
of gas turbine, PM generator, rectifier, accumulator, inverter
and motor.
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The generator system consists of a permanent-magnet
(PM) generator with surface-mounted magnets and a six-
pulse controlled bridge rectifier, because of their high
efficiency, high reliability, and high power density. A fibre
bandage surrounding the rotor keeps the magnets in
place, which enables high speeds.

B. Objective of the paper

For the optimization of the design and for the analysis of
the performance of the generator, a suitable machine
model is necessary. This machine model may be based
on the calculation of the magnetic field in the air gap of
the machine, which is the subject of this paper.

The objective of this paper is to introduce an analytic
method for the calculation and visualisation of the
magnetic field in the air gep of a PM machine. The
derivation of the voltage equations shows that the
calculated magnetic field may form the basis of a
machine model.

The magnetic field is calculated two-dimensionally and in
a cylindrical coordinate system, which means that both
the radial and the tangential component are calculated.
This is done because the machine is cylindrical, and
because the effective air gap (which includes the
magnets) is rather large. Further, the space harmonics
of the field are considered. In this way, the magnetic field
is determined rather accurately. This is done, because
later in the research project, the calculated magnetic field
will be used to calculate losses in the machine, among
which the eddy current loss in the magnets and the loss
in a damper cylinder surrounding the rotor.

It is not new to calculate the magnetic field two-
dimensionally and in a cylindrical coordinate system, as
appeare from [1], [2], and [3]. However, these referances
use the scalar magnetic potential to calculate the
magnetic field, and they do not plot lines of magnetic
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flux. In this paper, we use the magnetic vector potential.
This has the advantage that lines of magnetic filux can
easily be plotted as lines of constant magnetic vector
potential.

Compared to Finite Element Methods, this method has
the disadvantage that it is not suitable for complicated
constructions. Therefore, it uses more simplifying
assumptions. However, this method has the advantage
that it gives more insight in the relations between
dimensions and parameters. This is important when the
machine design is optimized later in the research project.

C. Main assumptions and starting-points

The derivations in this paper are based on the following

assumptions.

- End effects are negiigible.

- Hysteresis and eddy currents in stator and rotor iron
are negligible, and the magnetic permeability of the
iron is infinite.

- Eddy currents the magnets are negligible, and the
relative magnetic permeability of the magnets is one.

- Effects of stator slots are negligible. The slotted stator
is replaced by a smooth cylindrical stator surface. The
current in a stator slot is replaced by a surface (or
linear) current density on the stator surface at the
place of the slot opening.

- In practice, the magnet pole arcs often consist of
rectangular magnet blocks. To make the calculations
possible, the magnet blocks are replaced by magnet
pole arcs with a radial magnetization which is
inversely proportional to the radius.

Figure 2 depicts the PM machine with some important

dimensions.

Figure 2: Section of a two-pole PM machine.
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D. Outline

This paper has the following structure. First, section I
derives a method to calculate and visualize the magnetic
field in the air gap of the PM generator. Nexi, in section
Il and IV, this method is used to calculate and visualize
the magnetic fields due to the magnets and the stator
currents. The total magnetic field is a superposition of
the contributions due to the magnets and due to the
stator currents, because the magnetic circuit is assumed
to be linear. Section V shows that the calculated
magnetic field may form the basis of a machine model
by deriving the voltage equations. Conclusions are drawn
in section VI.

Il. DERIVATION OF THE CALCULATION METHOD

In this section, the differential egquation for the magnetic
field in the air gap and the magnets of the machine is
derived. To solve this differential equation, boundary
conditions are required, which are also given. Further, it
is explained how the magnetic field is visualized. For a
more elaborate explanation of these derivations is
referred to a book, for example, [4].

A. The differential equation

The magnetic field in the air gap and the magnets
follows from Maxwell's equations for magnetoquasistatic
fields. The equations forming the basis of this derivation
are given by

VxH=J (M
V-B=0 (@)
B = po(H+ M) 3)
where

H is the magnetic field strength,

J is the current density,

B is the magnetic flux density,

Mo is the magnetic permeability in vacuum, and
M is the magnetization.

Using equation (3) in equation (1) results in

VX B = Uy (J+Vx M) 4

These equations become simpler when the magnetic
vector potential A is used. The relation between the
magnetic flux density and the magnetic vector potential
is given by

B=VxA (5)

To determine the magnetic vector potential A




completely, it is not enough to define its rotation.
Therefore, its divergence is also defined, and it is chosen
as

vVA=0 (6)
The magnetic vector potential of equation (5) always
satisfies equation (2), because the divergence of a
rotation is always zero.
Substitution of equation (5) in equation (4) results in a
differential equation for the magnetic vector potential A,
which is further worked out using equation (6):
UX(VXA) = V(VA)-VPA = -VPA = uy(J+Vx M) (7)
In the right side of this differential equation, we use two
assumptions:
- the stator currents only have an (axial) z-component
which does not depend on z, and
- the magnetization only has a radial component.
With these assumptions, the right side of equation (7)
only has a z-component which does not depend on z.
Therefore, the magnetic vector potential also only has a
z-component which does not depend on z and the
differential equation (squation (7)) can be written as

Ho M,
VAra) =
0 in the air spaces

where rand a are the radial coordinate and the angular
coordinate of the cylindrical coordinate system.

This differential equation can be solved by means of
separation of variables.

When this differential equation is solved, the magnetic
field is known, because the magnetic flux density can be
calculated by using 5=V x 4 (equation (5)).

in the magnets

(8)

B. The boundary coriditions

On the borders of magnets, air spaces and stator and
rotor iron, boundary conditions are required to solve the
differential equation.

The magnetic flux continuity condition prescribes that the
magnetic flux density normal to a surface between
medium a and medium b is continuous:

n(B*-B° =0 9)
Ampere's continuity condition prescribes that there is a
jump in the tangential component of the magnetic field
strength as one passas through a surface current density
K between medium a and medium b:

Ax(R*-A®% - K (10)

Often, the medium of one of the two regions is iron.
Because the magnetic permeability of iron is assumed to
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be infinite, the magnetic fieid strength in iron is zero, and
the magnetic flux density in iron cannot be determined.
In this case, the magnetic flux continuity condition cannot
be used, and Ampere’s continuity condition is sufficient.
These continuity conditions are not boundary conditions
for the magnetic vector potential. However, they can be
used, because the relations between the magnetic vector
potential and the magnetic field strength and the
magnetic flux density are known (the equations (5) and

(3))-
C. Visualization of the field

A beautiful property of the magnetic vector potential is
that it can be used to plot the lines of magnetic flux. This
is shown in this subsection, and used in the next
sections.

From the magnetic vector potential, the magnetic flux
density follows with equation (5). For a two-dimensional
field, this equation can be worked out to

B=VxA=-7,xVA,

where 7, is the unit vector in the z direction.

This shows that the lines of magnetic flux density are
perpendicular to the gradient of A,. Therefore, the lines
of magnetic flux can be plotted as the lines of constant
magnetic vector potential (or the equipotential lines of
the magnetic vector potential).

(1)

Hl. THE MAGNETS

This section starts with a description of the
magnetization of the magnets in cylindrical coordinates.
This description is used for the calculation of the
magnetic field due to the magnets (while the stator
currents are zero).

A. The magnetization of the magnets

In practice, the magnet pole arcs often consist of many
rectangular magnet blocks with magnetization M,. To
make the calculations possible, the magnet blocks are
replaced by magnet pole arcs. The magnetization of
these pole arcs only has a radial component M,, which
is inversely proportional to the radius.

Often, the magnet pole arcs do not cover the whole rotor
surface, so that there are air spaces between the
magnet pole arcs. These air spaces are treated as
magnet arcs without magnetization. This is allowed,
because magnets without magnetization are assumed to
have the same electromagnetic properties as air.

With this, the radial component of magnetization M(ra)



on the interval -1/(2p) < a,<3m/(2p) can be written as

when -a_<a<aq,,

when ®-a_<a <%+, (12)
p

on the rest of the interval

-1/(2p) < a,< 31/ (2p)

mira) -

where (see figure 2)

r, is the radius of the rotor iron ,
a, is the rotor coordinate,

a,, is the magnet pole arc, and

p is the number of pole pairs.

This magnetization can be written as a Fourier series,
which is done because the solution of the differential

equation also has the form of a Fourier series:

b ~ I
M(ra) = Y. M, ~cos(kpa) ;
k135, r
a, (13)
M, - % [ M,gos(kpa)da, - i‘n—Mmsin(kpam)
-a

B. The magnetic field due to the magnets

To calculate the magnetic vector potential due to the

magnets, the differential equation (equation (8)) is solved

in two regions:

- the magnet region indicated by the superscript m
(r.<r<r,, see figure 2), and

- the air-gap region indicated by the superscript g
(r,<r<r, see figure 2).

Ampeére's continuity condition (equation (10)) is applied

to the stator surface, the rotor surface and the magnet

surface. This results in three boundary conditions for the

tangential component of the magnetic field strength:

Hy{r,a) = 0 (14)
Hp(r,a) =0 (15)
Ho(r Q) = Hefr,,a,) (16)

Further, the magnetic flux continuity condition (equation
(9)) is applied to the magnet surface. This results in a
boundary condition for the radial component of the
magnetic flux density:

Bo(rp@) = Bal,0) a7)

With these boundary conditions and the magnetization of
equation (13), the magnetic vector potential in the
magnet region A, is solved as

An(ra) =
“ 2wy (292 ) g M, (18
k1,35,.. 2(/‘52/('0—/',2/(’0) r,/;;p /(,0

and the magnetic vector potential in the air-gap region
A2 is solved as

Aq(ra) =
S Vil I WATN ¥/ 19
( S P)( m r p) ryo ksin(kpar) ( )
4=1,35,.. 2(/‘52/('0—/’,2/( ,,,f;p Kp

Figure 3 depicts the lines of constant magnetic vector
potential. As shown in subsection I1.C, these lines are
the lines of magnetic flux. In this figure, they are caused
by the magnetization of the magnets.

Figure 3: The lines of magnetic flux due to the magnets in the
air gap and the magnets. One pole-pitch of a four-pole machine
is depicted.

IV. THE STATOR CURRENTS

This section starts with a description of the surface
current density due to the stator currents. This
description is used for the calculation of the magnetic
field due to these currents (while the magnetization of
the magnets is zero).
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A. The surface current density of the stator

The current in the stator slots is replaced by a surface
current density A, on the stator surface at the place of
the slot openings.

The conductor density 71, (the number of conductors per
radian, as introduced in [5]) of stator phase a is a
function of the stator coordinate a (see figure 2):

o 1 i

= - N, sin(kpa 20
N0 “23:5 ; Vessin(kpa) (20)
In this equation, A, is the number of tumns of the kth
space harmonic of the conductor density, which is
related to the actual number of turns A by

4 .
N,, = E/(mstm(%kn)

S,

(21)

where 4, , is the winding factor for the kth space
harmonic of the actual winding.

Again, this conduclor density is written as a Fourier
series, because the solution of the differential equation
also has the form of a Fourier series.

When a current 7, flows in this winding, the surface
current density of this winding can be calculated as

Kalad = X
k135, el

The conductor densities of the phases b and ¢ are equal

to the conductor density of phase a, except an angular

shift of their axes, which lay at a,=2m/(8p) and

a.=4n/(3p) respectively. Using this, the surface current

density of a three-phase stator can be expressed as

Mok (22)

I sin(Apa)

Klag = i

ki35, 2l
{/'sasin(/(pa ) +igSin(Kpa-Zm) + /'scsin(k(pa;f;-n))}

N,

(23)

B. The magnetic field due to the stator currents

To calculate the magnetic vector potential due to the
stator currents, the differential equation (equation (8)) is
solved in the air-gap region (r,<r<r,). It is not
necessary to separate two regions, because magnets
without magnetization are assumed to have the same
electromagnetic characteristics as air.

Ampére's continuity condition (equation (10)) is applied
to the stator surface and the rotor surface. This resuilts
in two boundary conditions for the tangential component
of the magnetic field strength:

Hr.a) = 0 (24)

Hirsagd = -Kfa) (25)

With these boundary conditions and the surface current
density of equation (23), the magnetic vector potential
can be calculated as

pay - I il
K135 PR 2hp

{/'Sasin (koa ) +i,sin (/f(pas—%n)) + /scsin(k(pas-gn))}

The lines of magnetic flux due to the stator currents are

plotted in figure 4 as the lines of constant magnetic
vector potential.

(26)

Figure 4: The lines of magnetic flux due to the stator currents
(/2=0, /y=-1) in the air gap. One pole-pitch of a four-pole
machine is depicted, and the places of the slot openings are
indicated.

V. THE VOLTAGE EQUATIONS
A. A general expression for the stator voltage

The general expression for the stator voltage, which
foliows from Faraday's law, can be written as

(27)

, dy
o, = RJz+ d;

where A, is the stator resistance, and 4, 7., and ¥,
are vectors for the stator voltages, currents and flux
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linkages respectively, which are introduced as

USH /sa l'J sa
Ds = USb 1 /S = /sb 1 11}5 = q"sb (28)
USC /.S‘C w sc

The flux linkage ¥, of equation (27) is separated into
different contributions, namely:

1) the flux linkage due to leakage fields ¢, and

2) the flux linkage due to the air-gap field, which again

consists of two contributions:

2a) the flux linkage due to the magnets ¥ ,, and

2b) the flux linkage due to the stator currents ..

With this, the voltage equation of the stator is written as

dqu + dipsm+ dipss
df  dr dt

In the next subsections, the flux linkages in this voltage
equation are calculated. For the flux linkage due to the
magnets, this is done extensively in subsection V.C. For
the flux linkages due to the stator, only the results of the
calculation are given.

(29)

US = HS/S+

B. The leakage flux of the stator

Because of the symmetry of the stator and the air gap,
the self-inductances of the leakage flux of the stator
windings are equal; they are called £_ . For the same
reason, the mutual inductances of the leakage flux
between the different phases are equal; they are called
M, .- Hence, the leakage flux can be written as

~
/‘sna Msoab Mscab

Vo = Mow Los Mpw|l.= L7, (30)
Msaab Msoab Lsua

C. The flux linkages due to the magnets

The flux linkage of an arbitrary winding is related to the
magnetic vector potential by using equation (5) in the
general equation for the flux linkage. It is further
simplified by using Stokes' integral theorem [4]:
¥ = [[Bda= [[vxA-da-= §A4-ds 31)
s s c
With this, the flux ¢ {a)) linked by a full-pitch turn at the
stator surface at stator coordinate a, can be calculated
as
L

Yla) = /S(Az(rs,as)—Az(rs,a;;)) = 2/ A r,a) (32)
where /_is the stack length of the machine.

In this equation, we used that A(r,a+7/p) =-Afrsa) is

valid because of the symmetry of the machine, as
appears from the derived equations for the magnetic
vector potential (the equations (18), (19), and (26)).
With this expression for the flux linked by a full-pitch
turn, the flux ¥, linked by stator phase a is obtained by
integration:

n/p
Vs = P[ nfa) ¥ fada,
on/p
= 2p[ n,a)1,ALr,a)da,
0

(33)

The magnetic vector potential due to the magnets
(equation (19)) is written as a function of the stator
coordinate a, by substituting a,=a,-6, where 6 is the
rotor position angle (see figure 2). When this equation
with equation (20) is substituted in equation (33), the flux
linkage due to the magnetic field of the magnets Ve
can be calculated as

© 2k 2kp, kD r,
R e
#1385 (r p—/‘r p),,mp 2kp
The conductor densities of the phases b and ¢ are equal
to the conductor density of phase a, except an angular
shift of their axes, which lay at a,=2m/(8p) and
a,=41/(3p) respectively. Using this, the fluxes linked by
the stator phases can be calculated as

msm =
cos(kp6)
" 2k 2kpy K )
5 (17 =17 VLT, MM N, M, COS(/f(Pe"z‘")) (35)

2%p 24

k135 (rP-r 2kp

e
" COS(/f(/JG—gn))

The magnetization of the magnets is constant. Therefore,
the flux linkage due to the magnets ¥, only depends

on the position of the rotor. The time derivative of this
flux is the no-load voltage e,

sin{4p6b)
’, - d¥, _ i _e ksin(k(pe-gn))
dt  4iss. © .
sin(k(p6-3m) (36)
- (/.;/(P_/,fk /':p/',nu JQN /l;/
Yo Py ,
£ (f:kp—f/?k /’:7’0 2 0's sk k

where Q is the mechanical angular velocity of the rotor,
which is introduced as:

(37)
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Figure 5 depicts a measured and a calculated no-load
voltage, which agree good. That the horizontal parts
agree, means that the important space harmonics of the
magnetic field are also calculated properly. This figure
affirms the usefulness of the proposed way of calculating
the magnetic field.
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Figure 5: Measured (—) and calculated (--) no-load line voltage.
D. The fluxes linkages due to the stator currents

The fluxes linkages due to the field of the stator currents
can be calculated in the same way as the flux due to the
field of the magnets. This is done by using the magnetic
vector potential due to the stator currents (equation (26))
instead of the magnetic vector potential due to the
magnets (equation (19)). The result is

= Z Lss,k7 s
k=135,..
1 cos(—i—/m) cos(%/m)
Loy = Lok cos(%/m) 1 cos(-';'-/m) (38)
cos(gkn) cos(ilm) 1

24p, ka

re Tt/ Ns .

4kp

L =

55,k

24
re P_/./ kp

E. Summary

Using the derived expressions ((30), (36), and (38)), the
voltage equation of the machine can be written as

"’ ©
o

A=1,3,5,..

_,

0,= 8, Aj Ly (39)

”"‘dl

VI. CONCLUSIONS

An analytic method for the two-dimensional calculation of
the magnetic field in the cylindrical air gap of a PM
generator is described.

This field can be visualized by plotting the lines of
constant magnetic vector potential.

The calculated magnetic field may form the basis of a
machine model, as appears from the derivation of the
voltage equations. A measured no-load voltage affirms
the validity of the calculation method.

The proposed analytic method gives insight into the
relations between dimensions and parameters of the
machine, which is important when optimizing the design.
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